NGF-OME: ITS METABOTROPHIC EXPRESSION
Homage to Rita Levi-Montalcini

George N. Chaldakov¹, Luigi Aloe², Mariyana G. Hristova¹, Anton B. Tonchev¹, Vesselka Nikolova³, Plamen Panayotov³, and Peter I. Ghenev⁴
¹Laboratory of Cell Biology, Medical University, Varna, Bulgaria, ²Institute of Neurobiology and Molecular Medicine, National Research Council (CNR), Rome, Italy, ³Clinic of Cardiovascular Surgery and ⁴Department of General and Clinical Pathology, Varna, Bulgaria

Nowadays, in the postgenome time, many “-ome” studies have emerged including proteome, transcriptome, interactome, metabolome, adipokinome, connectome. In this vein, the catchall term NGF-ome embodies all the actions of NGF in health and disease. Accordingly, the present Festschrift, also tabula gratulatoria, is to honor and acknowledge the contributions of the distinguished neuroscientist and magistra Rita Levi-Montalcini, the Nobel Prize winner-1986 for the discoverer of NGF. Today, NGF and another neurotrophin, brain-derived neurotrophic factor (BDNF), are well recognized to mediate multiple biological phenomena, ranging from the neurotrophic through immunotrophic and epitheliotrophic to metabotrophic effects. These latter effects are involved in the maintenance of cardiometabolic homeostasis (glucose and lipid metabolism as well as energy balance, and cardioprotection). Circulating and/or tissue levels of NGF and BDNF are altered in cardiometabolic diseases (atherosclerosis, obesity, type 2 diabetes, metabolic syndrome, and type 3 diabetes/Alzheimer’s disease). A hypothesis thus emerged that a metabotrophic deficit due to the reduction of NGF/BDNF availability and/or utilization may be implicated in the pathogenesis of cardiometabolic and neurodegenerative diseases. The present challenge is therefore to cultivate a metabotrophic thinking about how we can modulate NGF/BDNF secretion and signaling for the benefit of human cardiometabolic and mood health. Biomed Rev 2010; 21: 25-29.

Key words: NGF, BDNF, metabotrophins, cardiometabolic diseases
INTRODUCTION

“Ome sweet ome”

Recent studies provide evidence that morbid obesity is a major burden of human health that plays a pivotal role in the development of cardiometabolic diseases (CMD) (Table 1), also non-alcoholic steatohepatitis, obstructive sleep apnea syndrome, polycystic ovary syndrome, and Alzheimer’s disease. These are among the major health, social and economic evils of Homo sapiens recens, globally. The World Health Organization has predicted a “globesity epidemic” with more than one billion adults being overweight (BMI over 25 kg/m²) and at least 400 million of these being clinically obese (BMI over 30 kg/m²). Moreover, CMD are associated with cognitive and mood disorders including Alzheimer’s disease and depression (1-8). Arguably, we have learned more about the molecular control of food intake and energy homeostasis, particularly, the role played by adipose tissue in the pathogenesis of various diseases, including CMD. Cumulatively, such an adipocentric approach (8-13) has integrated the traditional cardovascular risks (age, sex, smoking, hypertension, dyslipidemia, homocysteinemia) and abdominal obesity and related features of the metabolic syndrome, hence, global cardiometabolic risk (14-16, cf. 17-19).

IMPLICATION OF NGF AND BDNF IN CARDIOMETABOLIC DISEASE: RESULTS OF A DREAM

During his student life at the Medical University, Varna, Bulgaria, one of us (GNC) used to work four years (1962-1966) as research associated at the Department of Pharmacology. It was that period of time when he for the first time “met” Professor Rita Levi-Montalcini, reading her first papers on nerve growth factor (NGF). Since then he has been infected by this talented molecule, and thought how to reach her Institute in Rome, Italy. Although some colleagues told him that it is very much difficult pursuit, he continued to believe more in the art of dream as presented by Emily Dickinson’s To Make a Prairie (To make a prairie it takes a clover and one bee,/ One clover, and a bee,/And revery./ The dream alone will do,/ If bees are few.)

Although in 1986-1987 (in Japan) as well as in 1991-1992 (in England) he liked to study the effect of NGF on vascular smooth muscle cells in culture and the expression of NGF in perivascular mast cells knowing Aloe and Montalcini publication (20), the host scientists have ignored his hypotheses. But not his dream! On its road, he, in 1995 contacted Luigi Aloe and invited him to contribute to Biomedical Reviews. In 1997 he has applied for NATO Research Fellowship, which required acceptance letter by the host institution. Obviously, his dream asked Luigi Aloe about and he provided him with such a letter, consequently awarded a fellowship allowing him appeared in the Institute of Neurobiology, CNR, Rome, in June 1998. During this first four months there as well as almost each year further on, he was honored of meeting in vivo many times Rita Levi-Montalcini.

NGF-OME PROJECT

At the beginning of this century the Human Genome Project was finalized estimating over 30 000 genes encoding more than 100 000 functionally distinct proteins. As happened usually, one solved problem delivered many unsolved ones. Thus in the postgenome time, many “-ome” projects have emerged including proteome, transcriptome, interactome, metabolome, adipokinome, connectome. In this vein, all the actions of NGF in health and disease are herein referred to as NGF-ome.

Since 1951 when the NGF was discovered followed by the discovery of other neurotrophins including brain-derived neurotrophic factor (BDNF) (Table 2), it has been increasingly recognized that life at neuronal level requires trophic support (21-26).

As often occurs, the framework of an initial conception of the role of a newly discovered biomolecule extends in the light of emerging findings. This was also the case for NGF. During some 25 years after its discovery, there have been few reasons given to indicate that NGF acts on nonneuronal cells.

<table>
<thead>
<tr>
<th>Table 1. Selected list of cardiometabolic diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atherosclerosis</td>
</tr>
<tr>
<td>Hypertension</td>
</tr>
<tr>
<td>Acute coronary syndromes</td>
</tr>
<tr>
<td>Myocardial infarction</td>
</tr>
<tr>
<td>Obesity</td>
</tr>
<tr>
<td>Type 2 diabetes mellitus</td>
</tr>
<tr>
<td>Metabolic syndrome</td>
</tr>
<tr>
<td>Metabolic-cognitive syndrome (2)</td>
</tr>
<tr>
<td>Type 3 diabetes mellitus (1,3-5)*</td>
</tr>
</tbody>
</table>

* For references for other diseases, see the text.
Table 2. Members of the protein family of neurotrophins

<table>
<thead>
<tr>
<th>NGF</th>
<th>Pro-NGF</th>
<th>LIP-1, LIP-2*</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDNF</td>
<td>Pro-BDNF</td>
<td>Neurotrophin (NT-3, NT 4/5, NT-6, NT-7)</td>
</tr>
</tbody>
</table>

* Two peptides derived from the pro-NGF: LIP1 is a 29-amino acid peptide, LIP2 is a 38-amino acid peptide, both corresponding to sequences within the NGF (47-49).

Thus, in 1975, Aloe and Levi-Montalcini have made an experiment demonstrating that treatment of newborn rats with NGF caused an increase in the number of mast cells in various organs. These findings (20) have triggered the study on neuroimmune interaction, leading to today’s accumulation of evidence that NGF is not only for neuronal life. Indeed, “the submerged areas of the NGF iceberg loom very large”, Rita Levi-Montalcini stated in her Nobel prize lecture reviewing 35 years of research on NGF (22).

Cumulatively, studies in the past three decades have revealed that the neurotrophins NGF and BDNF are not only stimulating for nerve growth and survival, but also exert trophic effects over (i) immune cells, acting as immunotrophins (20,27), (ii) keratinocytes, enterocytes, prostate and breast epithelial cells, acting as epitheliotrophins (see 21), (iii) endothelial cells, acting as angiogenic factors (28), and (iv) glucose, lipid and energy homeostasis, pancreatic beta cell and vascular system as well as wound healing, and thus designated metabotrophins (from Greek metabole and trophe, nutrition, means “nutritious for metabolism”) (8,18).

METABOTROPHIC NGF AND BDNF

Noteworthy, (i) pancreatic beta cells secrete NGF and express its receptor, tyrosine-kinase A (TrkA), these findings being implicated in the pathogenesis of diabetes mellitus (29-32), and (ii) systemic and/or local levels of the major metabotrophins, NGF and BDNF, are altered (reduced or, probably, compensatory elevated) in the major CMD (coronary atherosclerosis, obesity, diabetes, metabolic syndrome) (33-42), including acute coronary syndromes (43), and (iii) administration of BDNF improves both energy and glucose homeostasis (44,45). Metabotrophic effects of NGF and BDNF are summarized in Table 3.

Table 3. NGF and BDNF as metabotrophins

<table>
<thead>
<tr>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGF shares homology with proinsulin</td>
</tr>
<tr>
<td>NGF/BDNF are produced by pancreatic beta cells and exert insulinotropic effect</td>
</tr>
<tr>
<td>NGF/BDNF are trophic factors for pancreatic beta cells, also improve beta cell transplantation</td>
</tr>
<tr>
<td>NGF up-regulates expression of LDL receptor-related protein</td>
</tr>
<tr>
<td>NGF inhibits glucose-induced down-regulation of caveolin-1</td>
</tr>
<tr>
<td>NGF improves antioxidant homeostasis</td>
</tr>
<tr>
<td>NGF/BDNF decrease food intake</td>
</tr>
<tr>
<td>NGF supplementation rescues silent myocardial ischemia in diabetes mellitus</td>
</tr>
<tr>
<td>Healthy lifestyle increases brain and/or circulating levels of NGF/BDNF</td>
</tr>
<tr>
<td>Atherogenic risk factors (e.g., high fat diet) decrease NGF/BDNF levels</td>
</tr>
<tr>
<td>NGF improves diabetic erectile dysfunction</td>
</tr>
<tr>
<td>Circulating NGF levels are increased in the early stage of romantic love</td>
</tr>
</tbody>
</table>

* For the implication of NGF in nerve sprouting in sudden cardiac death, see 50,51. References for other items are listed in 8,9.

CONCLUSION

The discussed findings may implicate the metabotrophic expression of NGF-ome in the pathogenesis of cardiometabolic and neurodegenerative diseases. This hypothesis may open new approaches in the search of exogenous metabotrophic factors, such as (i) small molecules boosting secretory and/or signaling pathways of both NGF and BDNF (8,18,19), (ii) incretin mimetics and receptor agonists, because the insulinotropic hormone glucagon-like peptide-1 (GLP-1) and exendin-4, a GLP-1 receptor agonist, exert both neurotrophic and metabotrophic effects (46), and (iii) agents interfering with vascular endothelium growth factor (28).

The present challenge is therefore to learn more about the metabotrophic potential of human NGF-ome in the pathogenesis and therapy of cardiometabolic and neurodegenerative diseases.
REFERENCES

28. Lazarovici P, Marcinkiewicz C, Lelkes PI. Cross talk between the cardiovascular and nervous systems: neu-

47. DICou E. Multiple biological activities for two peptides derived from the nerve growth factor precursor. *Biochem Biophys Res Commun* 2006; 347: 833-837.

48. DICou E. High levels of the proNGF peptides LIP1 and LIP2 in the serum and synovial fluid of rheumatoid arthritis patients: evidence for two new cytokines. *J Neuroimmunol* 2008; 194: 143-146.

Biomed Rev 21, 2010