Scientific Online Resource System

Biomedical Reviews

Resveratrol: More than a phytochemical

Parichehr Hassanzadeh, Fatemeh Atyabi, Rassoul Dinarvand


In recent years, alternative and complementary medicine including the plant-based drugs with antioxidant and neuroptotective effects has attracted a growing interest. Resveratrol, a polyphenolic compound which is found in various plant species, has emerged as a promising nutraceutical with therapeutic potentials in neuropsychiatric, cardiometabolic and cancer diseases, also aging. The abundance of research providing promising findings about the multi-spectrum therapeutic applications of resveratrol and its encouraging potential to treat or prevent chronic and age-related disorders has raised a considerable number of clinical trials. Recently, resveratrol is implicated the biology of nerve growth factor (NGF), a critical player in the maintenance of neuronal growth and function. Furthermore, resveratrol affects the endocannabinoid signalling (eCBs) which exerts modulatory effects in the survival signalling pathways, neural plasticity, and a variety of neuroinflammatory and neurodegenerative processes. The therapeutic effects of this ubiquitous signalling system in Alzheimer`s disease, epilepsy, multiple sclerosis, mood and movement disorders, spinal cord injury, and stroke have been well-documented. In the present review, the implication of NGF and eCBs in the mechanism of action of resveratrol, that may be of therapeutic significance in neurological and non-neurological disorders, is highlighted. Biomed Rev 2015; 26: 13-21.

Full Text


Tapsell LC, Hemphill I, Cobiac L, Patch CS, Sullivan DR, Fenech M, et al. Health benefits of herbs and spices: the past, the present, the future. Med J Aust 2006; 185: S4-S24. PMD: 17022438.

Lastra CA, Villegas I. Resveratrol as an anti-inflammatory and anti-aging agent: mechanism and clinical implications. Mol Nutr Food Res 2005; 49: 405-430. PMD: 17956300.

Cal C, Garban H, Jazirehi A, Yeh C, Mizutani Y, Bonavida B. Resveratrol and cancer: chemoprevention, apoptosis, and chemoimmunosensitizing activities. Curr Med Chem- Anti-Cancer Agents 2003; 3: 77-93. PMD: 12678904.

Hassanzadeh P. Colorectal cancer and NF-κB signaling pathway. Gastroenterol Hepatol Bed Bench 2011; 4: 127- 132. PMD: 24834170.

Hung LM, Chen JK, Huang SS, Lee RS, Su MJ. Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes. Cardiovasc Res 2000; 47:549-555. PMD: 10963727.

Gulcin I. Antioxidant properties of resveratrol: a structureactivity insight. Innov Food Sci Emerg 2010; 11: 210-218. DOI: 10.1016/j.ifset.2009.07.002.

Hassanzadeh P. A quick look at obesity; the enemy within. Gastroenterol Hepatol Bed Bench 2011; 4: 186-191. PMD: 4017438.

Patel KR, Scott E, Brown VA, Gescher AJ, Steward WP, Brown K. Clinical trials of resveratrol. Ann NY Acad Sci 2011; 1215: 161-169. DOI: 10.1111/j.1749- 6632.2010.05853.x.

Sharma S, Misra CS, Arumugam S, Roy S, Shah V, Davis JA, et al. Antidiabetic activity of resveratrol, a known SIRT1 activator in a genetic model for type-2 diabetes. Phytother Res 2011; 25: 67-73. DOI: 10.1002/ptr.3221.

Okawara M, Katsuki H, Kurimoto E, Shibata H, Kume T, Akaike A. Resveratrol protects dopaminergic neurons in midbrain slice culture from multiple insults. Biochem Pharmacol 2007; 73: 550-560. PMD: 17147953.

Sahu SS, Madhyastha S, Rao GM. Neuroprotective effect of resveratrol against prenatal stress induced cognitive impairment and possible involvement of Na+, K+-ATPase activity. Pharmacol Biochem Behav 2013; 103: 520-525. DOI: 10.1016/j.pbb.2012.09.012.

Jung JC, Lim E, Lee Y, Kang JM, Kim H, Jang S, et al. Synthesis of novel trans-stilbene derivatives and evaluation of their potent antioxidant and neuroprotective effects. Eur J Med Chem 2009; 44: 3166-3174. DOI: 10.1016/j.ejmech.2009.03.011.

Pangeni R, Sahni JK, Sharma JAS, Baboota S. Resveratrol: review on therapeutic potential and recent advances in drug delivery. Exp Opin Drug Deliv 2014; 11: 1285-1298. DOI: 10.1517/17425247.2014.919253.

Chachay VS, Kirkpatrick CMJ, Hickman IJ, Ferguson M, Prins JB, Martin JH. Resveratrol-Pills to replace a healthy diet? Br J Clin Pharmacol 2011; 72: 27-38. DOI: 10.1111/j.1365-2125.2011.03966.x.

Han YS, Zheng WH, Bastianetto S, Chabot JG, Quirion R. Neuroprotective effects of resveratrol against β-amyloidinduced neurotoxicity in rat hippocampal neurons: Involvement of protein kinase C. Br J Pharmacol 2004; 141: 997-1005. PMD: 15028639.

Ferretta A, Gaballo A, Tanzarella P, Capitanio N, Nico B, Annese T, et al. Effect of resveratrol on mitochondrial function: Implications in parkin-associated familiar Parkinson`s disease. Biochim Biophys Acta 2014; 1842: 902-915. DOI: 10.1016/j.bbadis.

Wang J, Zhang Y, Tang L, Zhang N, Fan D. Protective effects of resveratrol through the up-regulation of SIRT1 expression in the mutant hSOD1-G93A-bearing motor neuronlike cell culture model of amyotrophic lateral sclerosis. Neurosci Lett 2011; 503: 250-255. DOI: 10.1016/j.neulet.2011.08.047.

Virmani A, Pinto L, Binienda Z, Ali S. Food, nutrigenomics, and neurodegeneration: neuroprotection by what you eat. Mol Neurobiol 2013; 48: 353-362. DOI: 10.1007/s12035- 013-8498-3.

Ahmeda RF, Abdel-Rahmana RF, Abdallaha HMI, Saleha DO, Farid OAHA, Hessin AF. Antidepressant-like effect of resveratrol in a subchronic model of depression. J Arab Soc Med Res 2014; 9: 48-53. DOI: 10.4103/1687- 4293.145619.

Ge JF, Peng L, Cheng JQ, Pan CX, Tang J, Chen FH, et al. Antidepressant-like effect of resveratrol: involvement of antioxidant effect and peripheral regulation on HPA axis. Pharmacol Biochem Behav 2013; 114-115: 64-69. DOI: 10.1016/j.pbb.2013.10.028.

Hurley LL, Akinfiresoye L, Kalejaiye O, Tizabi Y. Antidepressant effects of resveratrol in an animal model of depression. Behav Brain Res 2014; 268: 1-7. DOI: 10.1016/j.bbr.2014.03.052.

Berton O, Nestler EJ. New approaches to antidepressant drug discovery: Beyond monoamines. Nat Rev Neurosci 2006; 7: 137-151. PMD: 16429123.

Castren E, Voikar V, Rantamaki T. Role of neurotrophic factors in depression. Curr Opin Pharmacol 2007; 7: 18-21. PMD: 17049922.

Gallo G, Letourneau PC. Localized sources of neurotrophins initiate axon collateral sprouting. J Neurosci 1998; 18: 5403-5414. PMD: 9651222.

Lohof AM, Ip NY, Poo MM. Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature 1993; 363: 350-353. PMD: 8497318.

Lesser SS, Sherwood NT, Lo DC. Neurotrophins differentially regulate voltage-gated ion channels. Mol Cell Neurosci 1997; 10: 173-183. PMD: 9532579.

Hassanzadeh P, Arbabi E. The effects of progesterone on glial cell line-derived neurotrophic factor secretion from C6 glioma cells. Iran J Basic Med Sci 2012, 15: 1046- 1052. PMD: 23493386.

Schulte-Herbrüggen O, Jockers-Scherübl MC, Hellweg R. Neurotrophins: from pathophysiology to treatment in Alzheimer`s disease. Curr Alzheimer Res 2008; 5: 38-44. PMD: 18288930.

Lad SP, Neet KE, Mufson EJ. Nerve growth factor: structure, function and therapeutic implications for Alzheimer`s disease. Curr Drug Targets CNS Neurol Disord 2003; 2: 315-334. PMD: 14529363.

Aloe L, Rocco ML, Balzamino BO, Micera A. Nerve growth factor: a focus on neuroscience and therapy. Curr Neuropharmacol 2015; 13: 294-303. PMD: 26411962.

Hassanzadeh P, Hassanzadeh A. Effects of different psychotropic agents on the central nerve growth factor protein. Iran J Basic Med Sci 2010; 13: 202-209.

Hassanzadeh P, Rahimpour S. The cannabinergic system is implicated in the upregulation of central NGF protein by psychotropic drugs. Psychopharmacology 2011; 215: 129-141. DOI: 10.1007/s00213-010-2120-4.

Hassanzadeh P, Hassanzadeh A. Involvement of the neurotrophin and cannabinoid systems in the mechanisms of action of neurokinin receptor antagonists. Eur Neuropsychopharmacol 2011; 21: 905-917. DOI: 10.1016/j.euroneuro.2011.01.002.

Hassanzadeh P, Hassanzadeh A. The CB1 receptormediated endocannabinoid signaling and NGF: The novel targets of curcumin. Neurochem Res 2012; 37: 1112-1120. DOI: 10.1007/s11064-012-0716-2.

Hassanzadeh P, Hassanzadeh A. Implication of NGF and endocannabinoid signalling in the mechanism of action of sesamol: a multi-target natural compound with therapeutic potential. Psychopharmacology 2013; 229: 571-578. DOI: 10.1007/s00213-013-3111-z.

Hampson AJ, Grimaldi M, Axelrod J, Wink D. Cannabidiol and (-)Delta9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci USA 1998; 95: 8268- 8273. PMD: 9653176.

Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. The endocannabinoid system and NGF are involved in the mechanism of action of resveratrol: A multi-target nutraceutical with therapeutic potential in neuropsychiatric disorders. Psychopharmacology 2015; (in press).

Levi-Montalcini R. The nerve growth factor and the neuroscience chess board. Prog Brain Res 2004; 146: 525-527. PMD: 14699984.

Triaca V. Homage to Rita Levi-Montalcini. Molecular mechanisms of Alzheimer`s disease: NGF modulation of APP processing. Adipobiology 2013; 5: 7-18

Fiore M, Chaldakov GN, Aloe L. Nerve growth factor as a signalling molecule for nerve cells and also for the neuroendocrine-immune systems. Rev Neurosci 2009; 20: 133-145. PMD: 19774790.

Yanev S, Aloe L, Fiore F, Chaldakov GN. Neurotrophic and metabotrophic potential of nerve growth factor and brainderived neurotrophic factor: Linking cardiometabolic and neuropsychiatric diseases. World J Pharmacol 2013; 2: 92-99. DOI:10.5497/wjp.v2.i4.92

Chaldakov GN, Fiore M, Stankulov IS, Manni L, Hristova MG, Antonelli A, et al. Neurotrophin presence in human coronary atherosclerosis and metabolic syndrome: a role for NGF and BDNF in cardiovascular disease? Prog Brain Res 2004; 146: 279-289. PMD: 14699970.

Kawamoto K, Matsuda H. Nerve growth factor and wound healing. Prog Brain Res 2004; 146: 369-384. . PMD: 14699974.

Tuveri MA, Triaca V, Aloe L. The nerve growth factor induces cutaneous ulcer healing in non-responder transplanted skin. Ann Ist Super Sanita 2006; 42: 94-96. PMD: 16801731.

Hassanzadeh P. Tissue engineering and growth factors. Updated evidence. Biomed Rev 2012; 23: 19-35. DOI:

Kendrick KM. The neurobiology of social bonds. J Neuroendocrinol 2004; 16: 1007-1008. PMD: 15667456.

Angelucci F, Aloe L, Vasquez PJ, Mathe AA. Mapping the differences in the brain concentration of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in an animal model of depression. Neuroreport 2000; 11: 1369-1373. PMD: 10817624.

Chaldakov GN, Tonchev A, Aloe L. NGF and BDNF: from nerves to adipose tissue, from neurokines to metabokines. Relevance to neuropsychiatric and cardiometabolic diseases. Riv Psichiatr 2009; 44: 79-87. PMD: 20066808.

Alleva E, Petruzzi S, Cirulli F, Aloe L. NGF regulatory role in stress and coping of rodents and humans. Pharmacol Biochem Behav 1996; 54: 65-72. PMD: 8728540.

Hellweg R, Lang UE, Nagel M, Baumgartner A. Subchronic treatment with lithium increases nerve growth factor content in distinct brain regions of adult rats. Mol Psychiatry 2002; 7: 604-608. PMD: 12140783.

Cheng S, Ma M, Ma Y, Wang Z, Xu G, Liu X. Combination therapy with intranasal NGF and electroacupuncture enhanced cell proliferation and survival in rats after stroke. Neurol Res 2009; 31: 753-758. doi: 10.1179/174313209X382557.

Banasr M, Valentine GW, Li XY, Gourley SL, Taylor JR, Duman RS. Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of the adult rat. Biol Psychiat 2007; 62: 496-504. PMD: 17585885.

Miwa T, Moriizumi T, Horikawa I, Uramoto N, Ishimaru T, Nishimura T, et al. Role of nerve growth factor in the olfactory system. Microsc Res Tech 2002; 58: 197-203. PMD: 12203698.

Moises HC, Womble MD, Washburn MS, Williams LR. Nerve growth factor facilitates cholinergic neurotransmission between nucleus basalis and the amygdala in rat: an electrophysiological analysis. J Neurosci 1995; 15: 8131-8142. PMD: 8613748.

Fernandez-Ruiz JJ, Berrendero F, Herna´ndez ML, Ramos JA. The endogenous cannabinoid system and brain development. Trends Neurosci 2000; 23: 14-20. PMD: 10631784.

Hassanzadeh P, Hassanzadeh A. Cannabinoid CB1 receptors mediate neurokinin A-induced synaptic plasticity in the spinal locomotor network. J Neurol Neurophysiol 2013; 4: 3. DOI:

Bambico FR, Duranti A, Tontini A, Tarzia G, Gobbi G. Endocannabinoids in the treatment of mood disorders: evidence from animal models. Curr Pharm Des 2009; 15: 1623-1646. PMD: 19442178.

Hassanzadeh P, Rostami F. Cannabinoid CB1 receptors are involved in neuroleptic-induced enhancement of brain neurotensin. Iran J Basic Med Sci 2014; 17: 181-188. PMD: 24847420.

Hassanzadeh P, Arbabi E. Cannabinoid CB1 receptors mediate the gastroprotective effect of neurotensin. Iran J Basic Med Sci 2012; 25: 803-810. PMD: 23492756.

Williams EJ, Walsh FS, Doherty P. The FGF receptor uses the endocannabinoid signaling system to couple to an axonal growth response. J Cell Biol 2003; 160: 481- 486. PMD: 12578907.

Hassanzadeh P. The endocannabinoid system: critical for the neurotrophic action of psychotropic drugs. Biomed Rev 2010; 21: 31-46.

Di Marzo V, Melck D, Bisogno T, De Petrocellis L. Endocannabinoids: endogenous cannabinoid receptor ligands with neuroremodulatory action. Trends Neurosci 1998; 21: 521-528. PMD: 9881850.

Boger DL, Sato H, Lerner AE, Hedrick MP, Fecik RA, Miyauchi H, et al. Exceptionally potent inhibitors of fatty acid amide hydrolase: the enzyme responsible for degradation of endogenous oleamide and anandamide. Proc Natl Acad Sci USA 2000; 97: 5044-5049. PMD: 10805767.

Casanova ML, Blazquez C, Martinez-Palacio J, Villanueva C, Fernandez-Acenero MJ, Huffman JW, et al. Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. J Clin Invest 2003; 111: 43-50. PMD: 1251587.

Hassanzadeh P, Ahmadiani A. Nitric oxide and c-Jun N-Terminal Kinase are involved in the development of dark neurons induced by inflammatory pain. Synapse 2006; 59: 101-106. doi: 10.1002/syn.20219.

Hassanzadeh P. Effect of celecoxib on the peripheral NO production. Iran J Basic Med Sci 2009; 12: 43-50.

van der Stelt M, Di Marzo V. Cannabinoid receptors and their role in neuroprotection. Neuromol Med 2005; 7: 37-50. PMD: 16052037.

Hassanzadeh P. Discovery of the endocannabinoid system: A breakthrough in neuroscience. Arch Neurosci 2014; 2: e15030. DOI: 10.5812/archneurosci.15030.

Di Marzo V, Hill MP, Bisogno T, Crossman AR, Brotchie JM. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson`s disease. FASEB J 2000; 14: 1432-1438. PMD: 10877836.

Gubellini P, Picconi B, Bari M, Battista N, Calabresi P, Centonze D, et al. Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission. J Neurosci 2002; 22: 6900- 6907. PMD: 12177188.

Lastres-Becker I, De Miguel R, and Fernandez-Ruiz JJ. The endocannabinoid system and Huntigton`s disease. Curr Drug Targets CNS Neurol Disord 2003; 2: 335-347. PMD: 18781982.

Arevalo-Martin A, Vela JM, Molina-Holgado E, Borrell J, Guaza C. Therapeutic action of cannabinoids in a murine model of multiple sclerosis. J Neurosci. 2003; 23: 2511-2516. PMD: 12684434.

Molina-Holgado E, Vela JM, Arévalo-Martín A, Almazán G, Molina-Holgado F, Borrell J, et al. Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptors and phosphatidylinositol- 3 kinase/Akt signaling. J Neurosci 2002; 22: 9742-9753. PMD: 12427829.

Garcia-Ovejero D, Arevalo-Martin A, Petrosino S, Docagne F, Hagen C, et al. The endocannabinoid system is modulated in response to spinal cord injury in rats. Neurobiol Dis 2009; 33: 57-71. doi: 10.1016/j. nbd.2008.09.015.

McCormick DA, Contreras D. On the cellular and network bases of epileptic seizures. Annu Rev Physiol 2001; 63: 815-846. PMD: 11181977.

Hassanzadeh P, Arbabi E, Rostami F. The ameliorative effects of sesamol against seizures, cognitive impairment and oxidative stress in the experimental model of epilepsy. Iran J Basic Med Sci 2014; 17: 100-107. PMD: 2471892.

Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R, Rostami F. Ferulic acid exhibits antiepileptogenic effect and prevents oxidative stress and cognitive impairment in the pentylenetetrazole kindling model of epilepsy in rats. Iran J Basic Med Sci 2015 (in press).

Wallace MJ, Martin BR, De Lorenzo RJ. Evidence for a physiological role of endocannabinoids in the modulation of seizure threshold and severity. Eur J Pharmacol. 2002; 452: 295-301. PMD: 12359270.

Hayakawa K, Mishima K, Irie K, Hazekawa M, Mishima S, Fujioka M, et al. Cannabidiol prevents a post-ischemic injury progressively induced by cerebral ischemia via a high-mobility group box1-inhibiting mechanism. Neuropharmacology 2008; 55: 1280-1286. DOI: 10.1016/j.neuropharm.2008.06.040.

Weksler ME, Gouras G, Relkin NR, Szabo P. The immune system, amyloid-β peptide, and Alzheimer`s disease. Immunol Rev 2005; 205: 244-256. PMD: 15882358.

Iuvone T, Esposito G, Esposito R, Santamaria R, Di Rosa M, Izzo AA. Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells. J Neurochem 2004; 89:134-141. PMD: 15030397.

Van der Stelt M, Mazzola C, Esposito G, Matial I, Petrosino S, De Filippis D, et al. Endocannabinoids and β-amyloid-induced neurotoxicity in vivo: effect of pharmacological elevation of endocannabinoid levels. Cell Mol Life Sci 2006; 63:1410-1424. PMD: 16732431.

Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A, et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 2003; 302: 84-88. PMD: 14526074.

Hohmann AG, Walker JM. Cannabinoid suppression of noxious heat evoked activity in wide dynamic range neurons in the lumbar dorsal horn of the rat. J Neurophysiol 1999; 81:575-583. PMD: 10036261.

GÃœhring H, Hamza M, Sergejeva M, Ates M, Kotalla CE, Ledent C. A role for endocannabinoids in indomethacin induced spinal antinociception. Eur J Pharmacol 2002; 454:153-163. PMD:12421642.

Welch SP, Eads M. Synergistic interactions of endogenous opioids and cannabinoid systems. Brain Res 1999; 848: 183-190. PMD: 1061271.

Hassanzadeh P, Hassanzadeh A. The role of the endocannabinoids in suppression of the HPA axis activity by doxepin. Iran J Basic Med Sci 2011; 14: 414-421. PMD: 23493814.

Manji HK, Drevets WC, Charney DS. The cellular neurobiology of depression. Nat Med 2001; 7: 541-547. PMD: 11329053.

Navarro M, Hernandez E, Munoz RM, del Acro I, Villanua MA, Carrera MRA. Acute administration of the CB1 cannabinoid receptor antagonist SR141716A induces anxiety-like responses in the rat. Neuroreport 1997; 8: 491-496. PMD: 9080435.

Pirola L, Frojdo S. Resveratrol: one molecule, many targets. IUBMB Life 2008; 60: 323-332. PMD: 18421779.

Wang Z, Gu J, Wang X, Xie K, Luan Q, Wan N, et al. Antidepressant-like activity of resveratrol treatment in the forced swim test and tail suspension test in mice: the HPA axis, BDNF expression and phosphorylation of ERK. Pharmacol Biochem Behav 2013; 112: 104-110. DOI: 10.1016/j.pbb.2013.10.007.

Xu Y, Wang Z, You W, Zhang X, Li S, Barish PA, et al. Antidepressant-like effect of trans-resveratrol: Involvement of serotonin and noradrenaline system. Eur Neuropsychopharmacol 2010; 20: 405-413. DOI: 10.1016/j.euroneuro.2010.02.013.

Hassanzadeh P, Fullwood I, Sothi S, Aldulaimi D. Cancer nanotechnology. Gastroenterol Hepatol Bed Bench 2011; 4: 63-69. PMD: 24834159.

Hassanzadeh P. Nanopharmaceurticals: Innovative theranostics for the neurological disorders. Biomed Rev 2014; 25: 25-34.

Hassanzadeh P. New perspectives in biosensor technology. Gastroenterol Hepatol Bed Bench 2010; 3: 105-107.

Hassanzadeh P, Arbabi E, Rostami F, Atyabi F, Dinarvand R. Carbon nanotubes prolong the regulatory action of nerve growth factor on the endocannabinoid signaling. Physiol Pharmacol 2015; (in press).

Hassanzadeh P. Computational modelling: Moonlighting on the neuroscience and medicine. Biomed Rev 2013; 24: 25-31.

Bharali DJ, Siddiqui IA, Adhami VM, Chamcheu JC, Aldahmash AM, Mukhtar H, et al. Nanoparticle delivery of natural products in the prevention and treatment of cancers: current status and future prospects. Cancers 2011; 3: 4024-4045. DOI: 10.3390/cancers3044024.

Teskac K, Kristl J. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int J Pharm 2010; 390: 61-69. DOI: 10.1016/j.ijpharm.2009.10.011.



Article Tools
Email this article (Login required)
About The Authors

Parichehr Hassanzadeh
Tehran University of Medical Sciences

Nanotechnology Research Center, Faculty of Pharmacy

Fatemeh Atyabi
Tehran University of Medical Sciences

Nanotechnology Research Center, Faculty of Pharmacy, Department of Pharmaceutics, Faculty of Pharmacy

Rassoul Dinarvand
Tehran University of Medical Sciences

Nanotechnology Research Center, Faculty of Pharmacy, Department of Pharmaceutics, Faculty of Pharmacy

Font Size