Scientific Online Resource System

Biomedical Reviews

Gut Microbiota and Health: A Review With Focus on Metabolic and Immunological Disorders and Microbial Remediation

Biswaranjan Pradhan, David Datzkiw, Palok Aich

Abstract

Understanding and defining health is an important yet fuzzy topic. Despite several attempts, health is not a well-defined concept, therefore we seek to understand health from the perspective of the microbiome. Gut microbiota are an essential component in the modern concept of human health. However, the precise patterns of composition and functional characteristics of a healthy gut microbiome remain ill-defined. Microbial colonization patterns associated with disease states have been documented with the advancement of sequencing technologies. Several prebiotics and probiotics have been reported to restore the normal gut flora after being disrupted by various factors. Fecal microbial transplantation from healthy individuals into recipients suffering from diseases related to gut dysbiosis has also been reported to be effective in restoring the normal makeup of gut microbiota, as shown by its efficacy in treating Clostridium difficile infection, colitis, constipation, irritable bowel syndrome, and neurological conditions such as multiple sclerosis and Parkinson`s disease. In this review we attempt to define the parameters of healthy human gut flora and its disruption in diseased conditions, and restoration through administration of prebiotics, probiotics, and fecal microbial transplantation.


Full Text


References

Official records of the World Health Organization. 1975; United Nations, WHO, Interim Commission.

Bernad AD, Dalz Z, Wieckowska B, Maksymiuk T. Perception of health by healthy and ill persons. The New Challenges 2012; p. 127.

Dixon JB. The effect of obesity on health outcomes. Mol Cell Endocrinol 2010; 316: 104-108.

Powell AD, Kahn AS, Racial differences in women`s desires to be thin. Int J Eating Disord 1995; 17: 191-195.

Fitzgibbon, M.L., L.R. Blackman, M.E. Avellone. The relationship between body image discrepancy and body mass index across ethnic groups. Obesity Res 2000; 8: 582-589

Backhed F, R.E. Ley, J.L. Sonnenburg, D.A. Peterson, J.I. Gordon, Host-bacterial mutualism in the human intestine. Science 2005; 307: 1915-1920. DOI: 10.1126/ science.1104816

Qin J, Li R, JRaes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59-65. DOI: 10.1038/nature08821

Yatsunenko T, F.E. Rey, M.J. Manary, I. Trehan, M.G. Dominguez-Bello, M. Contreras, et al. Human gut microbiome viewed across age and geography. Nature 2012; 486: 222-227. DOI: 10.1038/nature11053

Koenig JE, A. Spor, N. Scalfone, A.D. Fricker, J. Stombaugh, R. Knight, et al., Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA 2011; 108 (Suppl 1): 4578-4585. DOI: 10.1073/pnas.1000081107

Reyes A, M. Haynes, N. Hanson, F.E. Angly, A.C. Heath, F. Rohwer, et al., Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 2010; 466: 334-338. DOI: 10.1038/nature09199

Lozupone CA, J.I. Stombaugh, J.I. Gordon, J.K. Jansson, R. Knight.Diversity, stability and resilience of the human gut microbiota. Nature 2012; 489: 220-230. DOI: 10.1038/nature11550

Hallen-Adams HE, Suhr MJ. Fungi in the healthy human gastrointestinal tract. Virulence 2016; DOI: 10.1080/21505594.2016.1247140

Arumugam M, J. Raes, E. Pelletier, D. Le Paslier, T. Yamada, D.R. Mende, et al. Enterotypes of the human gut microbiome. Nature 2011; 473: 174-180

Eckburg PB, E.M. Bik, C.N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, et al. Diversity of the human intestinal microbial flora. Science 2005; 308: 1635-1638. DOI: 10.1126/science.1110591

Le Chatelier E, T. Nielsen, J. Qin, E. Prifti, F. Hildebrand, G. Falony, et al., Richness of human gut microbiome correlates with metabolic markers. Nature 2013. 500: 541-546. 10.1038/nature12506

Cotillard A, S.P. Kennedy, L.C. Kong, E. Prifti, N. Pons, E. Le Chatelier, et al. Dietary intervention impact on gut microbial gene richness. Nature 2013; 500: 585-588. DOI: 10.1038/nature12480

Turnbaugh PJ, M. Hamady, T. Yatsunenko, B.L. Cantarel, A. Duncan, R.E. Ley, et al. A core gut microbiome in obese and lean twins. Nature 2009. 457: 480-484. 10.1038/nature07540

Belzer C, de Vos WM. Microbes inside - from diversity to function: the case of Akkermansia. ISME J 2012; 6: 1449-1458. DOI: 10.1038/ismej.2012.6

Coyte KZ, J. Schluter, K.R. Foster, The ecology of the microbiome: Networks, competition, and stability. Science 2015; 350: 663-666. DOI: 10.1126/science.aad2602

Cantarel BL, E. Waubant, C. Chehoud, J. Kuczynski, T.Z. DeSantis, J. Warrington, et al. Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J Invest Med 2016; 63: 729-734. DOI: 10.1097/ JIM.0000000000000192

Sampson TR, J.W. Debelius, T. Thron, S. Janssen, G.G. Shastri, Z.E. Ilhan, et al. Gut Microbiota regulate motor deficits and neuroinflammation in a model of Parkinson`s disease. Cell 2016; 167: 1469-1480. DOI: 10.1016/j. cell.2016.11.018

WHO. Global Status Report on Noncommunicable Diseases 2016 (cited; Available from: http://www.who.int/mediacentre/factsheets/fs311/en/)

Ng M, Fleming T, M. Robinson, B. Thomson, N. Graetz, et al. Global, regional and national prevalence of overweight and obesity in children and adults 1980- 2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014; 384: 766-781. DOI: 10.1016/S0140-6736(14)60460-8

Naukkarinen J, A. Rissanen, J. Kaprio, K.H. Pietilainen, Causes and consequences of obesity: the contribution of recent twin studies. Int J Obes (Lond) 2012; 36: 1017- 1024. DOI: 10.1038/ijo.2011.192

Popkin BM, Adair LS, Ng SW. Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 2012. 70: 3-21. DOI: 10.1111/j.1753- 4887.2011.00456.x

Luke A, R.S. Cooper, T.E. Prewitt, A.A. Adeyemo, T.E. Forrester, Nutritional consequences of the African diaspora. Annu Rev Nutr 2001; 21: 47-71. DOI: 10.1146/ annurev.nutr.21.1.47

Ley RE, P.J. Turnbaugh, S. Klein, J.I. Gordon. Microbial ecology: human gut microbes associated with obesity. Nature 2006. 444: 1022-1023 1DOI: 0.1038/4441022a

Turnbaugh PJ, R.E. Ley, M.A. Mahowald, V. Magrini, E.R. Mardis, J.I. Gordon. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444: 1027-1031. DOI: 10.1038/nature05414

Backhed F, H. Ding, T. Wang, L.V. Hooper, G.Y. Koh, A. Nagy, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 2004; 101: 15718-15723. DOI: 10.1073/ pnas.0407076101

Ridaura VK, J.J. Faith, F.E. Rey, J. Cheng, A.E. Duncan, A.L. Kau, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013; 341: 1241214. DOI: 10.1126/science.1241214

Suzuki TA, Worobey M. Geographical variation of human gut microbial composition. Biol Lett 2014; 10: 20131037. DOI: 10.1098/rsbl.2013.1037

Backhed F, J.K. Manchester, C.F. Semenkovich, J.I. Gordon. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 2007; 104: 979-984. DOI: 10.1073/pnas.0605374104

Le Chatelier E, T. Nielsen, J. Qin, E. Prifti, F. Hildebrand, G. Falony, et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500: 541-546

Cotillard AL, S.P. Kennedy, L.C. Kong, E. Prifti, N. Pons, E. Le Chatelier, et al. Dietary intervention impact on gut microbial gene richness. Nature 2013. 500: 585-588.

Vrieze A, E. Van Nood, F. Holleman, J. Salojarvi, R.S. Kootte, J.F.W.M. Bartelsman, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143: 913-916.

Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 2013; 8: e71108. DOI: 10.1371/journal.pone.0071108

Larsen N, F.K. Vogensen, F.W. van den Berg, D.S. Nielsen, A.S. Andreasen, B.K. Pedersen, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010; 5: e9085. DOI: 10.1371/journal.pone.0009085

Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut 2014; 63: 1513-1521. DOI: 10.1136/gutjnl-2014-306928

Hu J, Y. Nomura, A. Bashir, H. Fernandez-Hernandez, S. Itzkowitz, Z. Pei, et al. Diversified microbiota of meconium is affected by maternal diabetes status. PLoS One 2013; 8: e78257. DOI: 10.1371/journal. pone.0078257

Murri M, I. Leiva, J.M. Gomez-Zumaquero, F.J. Tinahones, F. Cardona, F. Soriguer, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Medicine 2013; 11: 46-46. DOI: 10.1186/1741-7015-11-46

de Goffau MC, S. Fuentes, B. van den Bogert, H. Honkanen, W.M. de Vos, G.W. Welling, et al. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia 2014. 57: 1569-77 10.1007/s00125-014-3274-0

Wen L, R.E. Ley, P.Y. Volchkov, P.B. Stranges, L. Avanesyan, A.C. Stonebraker, et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 2008. 455: 1109-1113. DOI: 10.1038/nature07336

Peng J, S. Narasimhan, J.R. Marchesi, A. Benson, F.S. Wong, L. Wen. Long term effect of gut microbiota transfer on diabetes development. J Autoimmun 2014. 53: 85-94. DOI: 10.1016/j.jaut.2014.03.005

Pernicova I, Korbonits M. Metformin - mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 2014. 10: 143-56. DOI: 10.1038/nrendo.2013.256

Bonora E, M. Cigolini, O. Bosello, C. Zancanaro, L. Capretti, I. Zavaroni, et al. Lack of effect of intravenous metformin on plasma concentrations of glucose, insulin, C-peptide, glucagon and growth hormone in non-diabetic subjects. Curr Med Res Opin 1984. 9: 47-51. DOI: 10.1185/03007998409109558

Buse JB, R.A. DeFronzo, J. Rosenstock, T. Kim, C. Burns, S. Skare, et al. The primary glucose-lowering effect of metformin resides in the gut, not the circulation: Results from Short-term Pharmacokinetic and 12-Week Dose-Ranging Studies. Diab Care 2016; 39: 198-205. DOI: 10.2337/dc15-0488

Napolitano A, S. Miller, A.W. Nicholls, D. Baker, S. Van Horn, E. Thomas, et al. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS One 2014; 9: e100778. DOI: 10.1371/journal. pone.0100778:

Ajouz, H., D. Mukherji, A. Shamseddine. Secondary bile acids: an underrecognized cause of colon cancer. World J Surg Oncol 2014. 12: 164-164. DOI: 10.1186/1477- 7819-12-164

Jemal, A., R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray, et al. Cancer statistics, 2008. Cancer J Clinicians 2008; 58: 71-96.

Rubirola AB. Intestinal microbiota in the adenoma progression to colorectal cancer: a cross-sectional study. 2014; DOI: http://hdl.handle.net/10256/10416

Gagniare J, J. Raisch, J. Veziant, N. Barnich, R. Bonnet, E. Buc, et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol 2016; 22: 501-518. DOI: 10.3748/wjg.v22.i2.501

Kado S, K. Uchida, H. Funabashi, S. Iwata, Y. Nagata, M. Ando, et al. Intestinal microflora are necessary for development of spontaneous adenocarcinoma of the large intestine in T-cell receptor chain and p53 doubleknockout mice. Cancer Res 2001; 61: 2395-2398.

Zhu Y, Luo TM, Jobin C, Young HA. Gut microbiota and probiotics in colon tumorigenesis. Cancer Lett 2011; 309:119-127. DOI: 10.1016/j.canlet.2011.06.004

Saleh M, Trinchieri G. Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol 2011; 11: 9-20. DOI: 10.1038/nri2891

Zackular JP, N.T. Baxter, K.D. Iverson, W.D. Sadler, J.F. Petrosino, G.Y. Chen, et al. The gut microbiome modulates colon tumorigenesis. MBio 2013; 4:e00692- 13. DOI: 10.1128/mBio.00692-13

Rhee K-J, S. Wu, X. Wu, D.L. Huso, B. Karim, A.A. Franco, et al. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wildtype C57BL/6 mice. Infect Immun 2009; 77: 1708-1718.

Wu S, K.-J. Rhee, E. Albesiano, S. Rabizadeh, X. Wu, H.-R. Yen, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 2009; 15: 1016-1022

Arthur JC, E. Perez-Chanona, M. Mahlbauer, S. Tomkovich, J.M. Uronis, T.-J. Fan, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012. 338: 120-123.

Arthur JC, R.Z. Gharaibeh, M. Mahlbauer, E. Perez- Chanona, J.M. Uronis, J. McCafferty, et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat Commun 2014; 5: 4724. DOI: 10.1038/ncomms5724

Boleij, A. and H. Tjalsma, The itinerary of Streptococcus gallolyticus infection in patients with colonic malignant disease. Lancet Infect Dis 2013; 13: 719-724.

Wang X, Yang Y, Huycke MM. Commensal bacteria drive endogenous transformation and tumour stem cell marker expression through a bystander effect. Gut 2015; 64: 459-468.

Prorok-Hamon M, M.K. Friswell, A. Alswied, C.L. Roberts, F. Song, P.K. Flanagan, et al. Colonic mucosaassociated diffusely adherent afaC+ Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer. Gut 2014; 63: 761-770. DOI: 10.1136/gutjnl-2013-304739

Han YW, W. Shi, G.T.J. Huang, S.K. Haake, N.-H. Park, H. Kuramitsu, et al., Interactions between periodontal bacteria and human oral epithelial cells: Fusobacterium nucleatum adheres to and invades epithelial cells. Infect Immun 2000. 68: 3140-3146.

Rubinstein MR, X. Wang, W. Liu, Y. Hao, G. Cai, Y.W. Han, Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/ÃŽ²-catenin signaling via its FadA adhesin. Cell Host Microbe 2013; 14: 195-206.

Lu R, Wu S, Zhang YG, Xia Y, Liu X, Zheng Y, et al. Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic beta-catenin signaling pathway. Oncogenesis 2014. 3: e105.

Rajilic-Stojanovic, M., E. Biagi, H.G. Heilig, K. Kajander, R.A. Kekkonen, S. Tims, et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 2011. 141: 1792-1801. DOI: 10.1053/j. gastro.2011.07.043

Chassard C, M. Dapoigny, K.P. Scott, L. Crouzet, C. Del`Homme, P. Marquet, et al. Functional dysbiosis within the gut microbiota of patients with constipated irritable bowel syndrome. Aliment Pharmacol Ther 2012; 35: 828-838.

Shih DQ, S.R. Targan, D. McGovern. Recent advances in IBD pathogenesis: genetics and immunobiology. Curr Gastroenterol Rep 2008. 10: 568-575.

Lopez J, Grinspan A. Fecal microbiota transplantation for inflammatory bowel disease. Gastroenterol Hepatol (NY) 2016; 12: 374-379.

Tinsley A, S. Naymagon, B. Mathers, M. Kingsley, B.E. Sands, T.A. Ullman, Early readmission in patients hospitalized for ulcerative colitis: incidence and risk factors. Scand J Gastroenterol 2015; 50: 1103-1109. DOI: 10.3109/00365521.2015.1020862

Kane SV, Systematic review: adherence issues in the treatment of ulcerative colitis. Aliment Pharmacol Ther 2006; 23: 577-585. DOI: 10.1111/j.1365- 2036.2006.02809.x

Tana C, Y. Umesaki, A. Imaoka, T. Handa, M. Kanazawa, S. Fukudo. Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol Motil 2010; 22: 512-519. DOI: 10.1111/j.1365-2982.2009.01427.x

Loddo I, Romano C. Inflammatory bowel disease: Genetics, epigenetics, and pathogenesis. Front Immunol 2015; 6: 551. DOI: 10.3389/fimmu.2015.00551:

Cho JH, Brant SR. Recent insights into the genetics of inflammatory bowel disease. Gastroenterology 2011; 140: 1704-1712 DOI: 10.1053/j.gastro.2011.02.046

Sartor RB. Genetics and environmental interactions shape the intestinal microbiome to promote inflammatory bowel disease versus mucosal homeostasis. Gastroenterology 2010; 139: 1816-1819. DOI: 10.1053/j. gastro.2010.10.036

Talley, N.J., M.T. Abreu, J.P. Achkar, C.N. Bernstein, M.C. Dubinsky, S.B. Hanauer, et al. An evidence-based systematic review on medical therapies for inflammatory bowel disease. Am J Gastroenterol 2011; 106 (Suppl 1): S2-25. DOI: 10.1038/ajg.2011.58

Mazal J. Crohn disease: pathophysiology, diagnosis, and treatment. Radiol Technol 2014; 85: 297-316.

Garud S, Peppercorn MA. Ulcerative colitis: Current treatment strategies and future prospects. Ther Adv Gastroenterol 2009; 2: 99-108. DOI: 10.1177/1756283X09102329

Lichtenstein GR, S.B. Hanauer, W.J. Sandborn. Management of Crohn`s disease in adults. Am J Gastroenterol 2009; 104: 465-483. DOI: 10.1038/ajg.2008.168

Kornbluth A, Sachar DB. Ulcerative colitis practice guidelines in adults: American College of Gastroenterology, Practice Parameters Committee. Am J Gastroenterol 2010. 105: 501-523. DOI: 10.1038/ajg.2009.727

Barreiro-de Acosta M, A. Alvarez Castro, R. Souto, M. Iglesias, A. Lorenzo, J.E. Dominguez-Munoz. Emigration to western industrialized countries: A risk factor for developing inflammatory bowel disease. J Crohns Colitis 2011; 5: 566-569. DOI: 10.1016/j.crohns.2011.05.009

Legaki E, Gazouli M. Influence of environmental factors in the development of inflammatory bowel diseases. World J Gastrointest Pharmacol Ther 2016; 7: 112-125. DOI: 10.4292/wjgpt.v7.i1.112

Siddharth J, N. Holway, S.J. Parkinson, A Western diet ecological module identified from the `humanized` mouse microbiota predicts diet in adults and formula feeding in children. PLoS One 2013. 8: e83689. DOI: 10.1371/journal.pone.0083689

Wei Y, W. Zhu, J. Gong, D. Guo, L. Gu, N. Li, et al. Fecal microbiota transplantation Improves the quality of life in patients with inflammatory bowel disease. Gastroenterol Res Pract 2015; 2015: 517597. DOI: 10.1155/2015/517597

Frank DN, A.L. St Amand, R.A. Feldman, E.C. Boedeker, N. Harpaz, N.R. Pace, Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 2007. 104: 13780-13785 DOI: 10.1073/ pnas.0706625104

Sokol H, B. Pigneur, L. Watterlot, O. Lakhdari, L.G. Bermudez-Humaran, J.J. Gratadoux, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 2008; 105: 16731-16736. DOI: 10.1073/pnas.0804812105

Joossens M, G. Huys, M. Cnockaert, V. De Preter, K. Verbeke, P. Rutgeerts, et al. Dysbiosis of the faecal microbiota in patients with Crohn`s disease and their unaffected relatives. Gut 2011; 60: 631-637. DOI: 10.1136/ gut.2010.223263

Rajilic-Stojanovic M, F. Shanahan, F. Guarner, W.M. de Vos. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm Bowel Dis 2013; 19: 481-488 DOI: 10.1097/MIB.0b013e31827fec6d

Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 2014; 146: 1489-1499. DOI: 10.1053/j.gastro.2014.02.009

Scaldaferri F, S. Pecere, V. Petito, D. Zambrano, L. Fiore, L.R. Lopetuso, et al. Efficacy and mechanisms of action of fecal microbiota transplantation in ulcerative colitis: Pitfalls and promises from a First Meta-Analysis. Transplant Proc 2016; 48: 402-407. DOI: 10.1016/j. transproceed.2015.12.040

Vincent C, M.A. Miller, T.J. Edens, S. Mehrotra, K. Dewar, A.R. Manges. Bloom and bust: intestinal microbiota dynamics in response to hospital exposures and Clostridium difficile colonization or infection. Microbiome 2016; 4: 12. DOI: 10.1186/s40168-016-0156-3

Chang JY, D.A. Antonopoulos, A. Kalra, A. Tonelli, W.T. Khalife, T.M. Schmidt, et al. Decreased diversity of the fecal microbiome in recurrent Clostridium difficile associated diarrhea. J Infect Dis 2008; 197: 435-438.

Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 1995; 125: 1401-1412.

Walker AW, J. Ince, S.H. Duncan, L.M. Webster, G. Holtrop, X. Ze, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 2011; 5: 220-230. DOI: 10.1038/ismej.2010.118

Ambalam P, M. Raman, R.K. Purama, M. Doble. Probiotics, prebiotics and colorectal cancer prevention. Best Pract Res Clin Gastroenterol 2016; 30: 119-131.

Araya MML, Reid G, Sanders ME, Stanton C. Guidelines for the Evaluation of Probiotics in Food. Jt. FAO/ WHOWork. Group, London, Ontario, 2002

Ewaschuk, J., R. Endersby, D. Thiel, H. Diaz, J. Backer, M. Ma, et al. Probiotic bacteria prevent hepatic damage and maintain colonic barrier function in a mouse model of sepsis. Hepatology 2007; 46: 841-850 10.1002/ hep.21750

Hashemi A, C.R. Villa, E.M. Comelli, Probiotics in early life: a preventative and treatment approach. Food Funct 2016; 7: 1752-1768. DOI: 10.1039/c5fo01148e

Li D, Wang P, Hu X, Chen F. The gut microbiota: A treasure for human health. Biotechnol Adv 2016; 34:1210-1224. DOI: 10.1016/j.biotechadv.2016.08.003

Kang JH, Yun SI, Park HO. Effects of Lactobacillus gasseri BNR17 on body weight and adipose tissue mass in diet-induced overweight rats. J Microbiol 2010; 48: 712-714. DOI: 10.1007/s12275-010-0363-8

Yun SI, H.O. Park, J.H. Kang, Effect of Lactobacillus gasseri BNR17 on blood glucose levels and body weight in a mouse model of type 2 diabetes. J Appl Microbiol 2009; 107: 1681-1686. DOI: 10.1111/j.1365- 2672.2009.04350.x

Kang JH, S.I. Yun, M.H. Park, J.H. Park, S.Y. Jeong, H.O. Park. Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS One 2013; 8: e54617. DOI: 10.1371/journal.pone.0054617

Liu X, Cao S, Zhang X. Modulation of gut microbiota- brain axis by probiotics, prebiotics, and diet. J Agric Food Chem 2015; 63:7885-7895. DOI: 10.1021/ acs.jafc.5b02404

Bravo JA, P. Forsythe, M.V. Chew, E. Escaravage, H.M. Savignac, T.G. Dinan, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 2011; 108: 16050-16055. DOI: 10.1073/pnas.1102999108

Rao AV, A.C. Bested, T.M. Beaulne, M.A. Katzman, C. Iorio, J.M. Berardi, et al. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog 2009; 1: 6. DOI: 10.1186/1757-4749-1-6 105a. Sherwin E, Rea K, Dinan TG, Cryan JF. A gut (microbiome) feeling about the brain. Curr Opin Gastroenterol 2016; 32: 96-102. DOI: 10.1097/ MOG.0000000000000244

Wang B, Y.K. Mao, C. Diorio, M. Pasyk, R.Y. Wu, J. Bienenstock, et al. Luminal administration ex vivo of a live Lactobacillus species moderates mouse jejunal motility within minutes. FASEB J 2010; 24: 4078-4088. DOI: 10.1096/fj.09-153841

Png CW, S.K. Linden, K.S. Gilshenan, E.G. Zoetendal, C.S. McSweeney, L.I. Sly, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 2010; 105: 2420-2428. DOI: 10.1038/ajg.2010.281

Santacruz, A., M.C. Collado, L. Garcia-Valdes, M.T. Segura, J.A. Martin-Lagos, T. Anjos, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr 2010; 104: 83-92. DOI: 10.1017/ s0007114510000176

Dethlefsen L, S. Huse, M.L. Sogin, D.A. Relman. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 2008; 6: e280. DOI: 10.1371/journal.pbio.0060280

Goldenberg JZ, L. Lytvyn, J. Steurich, P. Parkin, S. Mahant, B.C. Johnston. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev 2015; Cd004827. DOI: 10.1002/14651858. CD004827.pub4

Lata J, I. Novotna, V. Pribramska, J. Jurankova, P. Fric, R. Kroupa, et al. The effect of probiotics on gut flora, level of endotoxin and Child Pugh score in cirrhotic patients: results of a double-blind randomized study. Eur J Gastroenterol Hepatol 2007; 19: 1111-1113.

Swidsinski A, V. Loeningae Baucke, H. Verstraelen, S. Osowska, Y. Doerffel, Biostructure of fecal microbiota in healthy subjects and patients with chronic idiopathic diarrhea. Gastroenterology 2008; 135: 568-579.

Kirpich IA, N.V. Solovieva, S.N. Leikhter, N.A. Shidakova, O.V. Lebedeva, P.I. Sidorov, et al. Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver injury: a pilot study. Alcohol 2008; 42: 675-682.

Mastromarino P, S. Macchia, L. Meggiorini, V. Trinchieri, L. Mosca, M. Perluigi, et al. Effectiveness of Lactobacillus containing vaginal tablets in the treatment of symptomatic bacterial vaginosis. Clin Microbiol Infect 2009. 15: 67-74.

Roessler A, S.D. Forssten, M. Glei, A.C. Ouwehand, G. Jahreis. The effect of probiotics on faecal microbiota and genotoxic activity of faecal water in patients with atopic dermatitis: a randomized, placebo-controlled study. Clinl Nutr 2012. 31: 22-29.

Kajander, K., K. Hatakka, T. Poussa, M. Farkkila, R. Korpela. A probiotic mixture alleviates symptoms in irritable bowel syndrome patients: a controlled month intervention. Aliment Pharmacol Ther 2005; 22: 387- 394.

Lyra A, L. Krogius-Kurikka, J. Nikkila, E. Malinen, K. Kajander, K.S. Kurikka, et al. Effect of a multispecies probiotic supplement on quantity of irritable bowel syndrome-related intestinal microbial phylotypes. BMC Gastroenterol 2010; 10: 1-9.

Wong VW-S., C.-H. Tse, T.T.-Y. Lam, G.L.-H. Wong, A.M.-L. Chim, W.C.-W. Chu, et al. Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitisââ‚`a longitudinal study. PloS One 2013; 8: e62885.

Kuehbacher, T., S.J. Ott, U. Helwig, T. Mimura, F. Rizzello, B. Kleessen, et al. Bacterial and fungal microbiota in relation to probiotic therapy (VSL# 3) in pouchitis. Gut 2006; 55: 833-841. 120. Ng SC, E.F.C. Lam, T.T.Y. Lam, Y. Chan, W. Law, P.C.H. Tse, et al. Effect of probiotic bacteria on the intestinal microbiota in irritable bowel syndrome. J Gastroenterol Hepatol 2013; 28: 1624-1631.

Zhang F, W. Luo, Y. Shi, Z. Fan, G. J. Should we standardize the 1,700-year-old fecal microbiota transplantation? Am J Gastroenterol 2012; 107: 1755. DOI: 10.1038/ajg.2012.251

Eiseman B, W. Silen, G.S. Bascom, A.J. Kauvar. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 1958; 44: 854-859.

Li SS, A. Zhu, V. Benes, P.I. Costea, R. Hercog, F. Hildebrand, et al. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science 2016; 352: 586-589. DOI: 10.1126/science. aad8852

Di Luccia, B., R. Crescenzo, A. Mazzoli, L. Cigliano, P. Venditti, J.-C. Walser, et al. Rescue of fructose-induced metabolic syndrome by antibiotics or faecal transplantation in a rat model of obesity. PLoS One 2015; 10:e0134893. DOI: 10.1371/journal.pone.0134893

Vrieze, A., E. Van Nood, F. Holleman, J. Salojarvi, R.S. Kootte, J.F. Bartelsman, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143: 913-6.e7. DOI: 10.1053/j. gastro.2012.06.031

Binion DG. Strategies for management of Clostridium difficile infection in immunosuppressed patients. Gastroenterol Hepatol 2011; 7: 750-752.

Webb BJ, A. Brunner, C.D. Ford, M.A. Gazdik, F.B. Petersen, D. Hoda. Fecal microbiota transplantation for recurrent Clostridium difficile infection in hematopoietic stem cell transplant recipients. Transpl Infect Dis 2016; 18: 628-633 DOI: 10.1111/tid.12550

Kelly CR, C. Ihunnah, M. Fischer, A. Khoruts, C. Surawicz, A. Afzali, et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am J Gastroenterol 2014; 109: 1065-1071. DOI: 10.1038/ajg.2014.133

Weingarden AR, C. Chen, A. Bobr, D. Yao, Y. Lu, V.M. Nelson, et al. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. Am J Physiol Gastrointest Liver Physiol 2014; 306: G310-319. DOI: 10.1152/ajpgi.00282.2013

Rubin TA, C.E. Gessert, J. Aas, J.S. Bakken. Fecal microbiome transplantation for recurrent Clostridium difficile infection: report on a case series. Anaerobe 2013; 19: 22-26. DOI: 10.1016/j.anaerobe.2012.11.004

Brandt LJ, O.C. Aroniadis, M. Mellow, A. Kanatzar, C. Kelly, T. Park, et al. Long-term follow-up of colonoscopic fecal microbiota transplant for recurrent Clostridium difficile infection. Am J Gastroenterol 2012; 107: 1079-1087. DOI: 10.1038/ajg.2012.60

Di Bella, S., T. Gouliouris, N. Petrosillo. Fecal microbiota transplantation (FMT) for Clostridium difficile infection: focus on immunocompromised patients. J Infect Chemother 2015; 21: 230-237. DOI: 10.1016/j. jiac.2015.01.011

Aas J, Gessert CE, Bakken JS. Recurrent Clostridium difficile colitis: case series involving 18 patients treated with donor stool administered via a nasogastric tube. Clin Infect Dis 2003; 36: 580-585. DOI: 10.1086/367657:

Youngster I, J. Sauk, C. Pindar, R.G. Wilson, J.L. Kaplan, M.B. Smith, et al. Fecal microbiota transplant for relapsing Clostridium difficile infection using a frozen inoculum from unrelated donors: a randomized, openlabel, controlled pilot study. Clin Infect Dis 2014; 58: 1515-1522. DOI: 10.1093/cid/ciu135

Rossen NG, S. Fuentes, M.J. van der Spek, J.G. Tijssen, J.H. Hartman, A. Duflou, et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 2015; 149: 110-118. DOI: 10.1053/j.gastro.2015.03.045

Colman RJ, Rubin DT. Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis 2014; 8: 1569-1581. DOI: 10.1016/j.crohns.2014.08.006

Anderson JL, Edney RJ, Whelan K. Systematic review: faecal microbiota transplantation in the management of inflammatory bowel disease. Aliment Pharmacol Ther 2012; 36: 503-516. DOI: 10.1111/j.1365- 2036.2012.05220.x

Kao D, Hotte N, Gillevet P, Madsen K. Fecal microbiota transplantation inducing remission in Crohn`s colitis and the associated changes in fecal microbial profile. J Clin Gastroenterol 2014; 48: 625-628. DOI: 10.1097/ mcg.0000000000000131

Ianiro G, Bibbo S, Scaldaferri F, Gasbarrini A, Cammarota G. Fecal microbiota transplantation in inflammatory bowel disease: beyond the excitement. Medicine (Baltimore) 2014; 93: e97. DOI: 10.1097/ md.0000000000000097

Ni X, Fan S, Zhang Y, Wang Z, Ding L, Li Y, et al. Coordinated hospital-home fecal microbiota transplantation via percutaneous endoscopic cecostomy for recurrent steroid-dependent ulcerative colitis. Gut Liver 2016. 10: 975-980. DOI: 10.5009/gnl15456

Grigorescu I, Dumitrascu DL. Implication of gut microbiota in diabetes mellitus and obesity. Acta Endo (Bucharest) 2016; 12: 206-214. DOI: 10.4183/aeb.2016.206

Costantini AV. Fungalbionics: a new concept of the etiology of gout, hyperuricemia and their related diseases. Adv Expt Med Biol 1989; 253 A: 261-268.

Costantini AV. The fungal etiology of gout and hyperuriceamia: The antifungal mode of action of colchicine. Biomed Rev 1992; 1: 47-52.

Fantuzzi G. The sound of health. Front Immunol 2014; 5:351. DOI:10.3389/fimmu.2014.00351




DOI: http://dx.doi.org/10.14748/bmr.v27.2108

Refbacks

Article Tools
Email this article (Login required)
About The Authors

Biswaranjan Pradhan
School of Biological Sciences, Jatani, Khurdha, Odisha, India
India

National Institute of Science Education and Research Bhubaneswar (HBNI)

David Datzkiw
University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2G3
Canada

Department of Biology

Palok Aich
University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2G3
Canada

Department of Biology

Font Size


|