Scientific Online Resource System

Biomedical Reviews

Role of Neuropeptide Tyrosine (NPY) in Ethanol Addiction

Stefania Ciafrè, Marco Fiore, Mauro Ceccanti, Marisa Patrizia Messina, Paola Tirassa, Valentina Carito


Here, an overview of neurophysiological, pharmacological and genetic research on the role of neuropeptide tyrosine (NPY) in ethanol consumption and withdrawal is presented. NPY is abundantly expressed in the extended amygdala and is critically involved in the regulation of negative affective states in rats, also is involved with neurobiological responses to ethanol and other drug of abuse. Genetic, molecular and pharmacological evidences suggest that NPY is an important neurobiological substrate for the predisposition to alcoholism. Administration, as well as the withdrawal of ethanol, alters central NPY expression. Alcohol-preferring rats exhibit basal NPY deficits in central amygdala. In the latter, NPY may rescue dependence-induced increases in anxiety and alcohol drinking. Low NPY levels in some brain regions following ethanol withdrawal contribute to the increased sensitivity to seizure and the heightened levels of anxiety characteristic of withdrawal responses. Mice with deletion of NPY gene exhibit a high-anxiety, high-alcohol-drinking phenotype. Pharmacological and genetic manipulations suggest that central NPY signaling modulates ethanol consumption via Y1, Y2, and Y5 receptors. Analysis of chromosomal regions (QTLs) associated with alcohol consumption identified NPY as one of the genes that influence alcohol dependence and as a promising target for pharmacotherapeutics to combat alcohol associated disorders. Consequently, NPY is a potentially new pharmacological target for the treatment of alcohol diseases.

Full Text


Dumont Y, Martel J-C, Fournier A, St-Pierre S, Quirion R. Neuropeptide Y and neuropeptide Y receptor subtypes in brain and peripheral tissues. Prog Neurobiol 1992;38:125- 167.

Allen J, Novotný J, Martin J, Heinrich G. Molecular structure of mammalian neuropeptide Y: analysis by molecular cloning and computer-aided comparison with crystal structure of avian homologue. Proc Natl Acad Sci USA 1987;84:2532-2536.

Larhammar D, Ericsson A, Persson H. Structure and expression of the rat neuropeptide Y gene. Proc Natl Acad Sci USA 1987; 84:2068-2072.

Emson P, Quidt MD. NPY - a new member of the pancreatic polypeptide family. Trends Neurosci 1984; 7: 31–35. DOI: 10.1016/S0166-2236(84)80271-4

Gray TST, Morley JEJ. Neuropeptide Y: anatomical distribution and possible function in mammalian nervous system. Life Sci 1986;38:389-401. DOI: 10.1016/0024- 3205(86)90061-5

Larhammar D, Salaneck E. Molecular evolution of NPY receptor subtypes. Neuropeptides 2004; Aug;38(4):141- 51. DOI: 10.1016/j.npep.2004.06.002

Gilpin NW. Neuropeptide Y (NPY) in the extended amygdala is recruited during the transition to alcohol dependence. Neuropeptides. 2012 Dec;46(6):253–9. DOI: 10.1016/j.npep.2012.08.001

Hansel D, Eipper B. Regulation of olfactory neurogenesis by amidated neuropeptides. J Neurosci. 2001; 66:1-7. DOI: 10.1002/jnr.1191

Hansel D, Eipper B, Ronnett G. Neuropeptide Y functions as a neuroproliferative factor. Nature, 2001 Apr 19;410(6831):940-4.2001 DOI: 10.1038/35073601

Clark J, Kalra P, Crowley W, Kalra S. Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 1984 Jul;115(1):427-9. DOI: 10.1210/endo-115-1-427

Levine A, Morley J. Neuropeptide Y: a potent inducer of consummatory behavior in rats. Peptides 1984; Nov-Dec;5(6):1025-9. 9781(84)90165-7

Woldbye D, Madsen T, Larsen P, Mikkelsen J. Neuropeptide Y inhibits hippocampal seizures and wet dog shakes. Brain Res. 1996; Oct 21;737(1-2):162-8.

Woldbye D, Larsen P, Mikkelsen J, Klemp K. Powerful inhibition of kainic acid seizures by neuropeptide Y via Y5-like receptors. Nat Med. 1997; Jul;3(7):761-4. doi:10.1038/nm0797-761

Pedrazzini T, Seydoux J, Künstner P, Aubert JF, Grouzmann E, Beermann F, et al. Cardiovascular response, feeding behavior and locomotor activity in mice lacking the NPY Y1 receptor. Nat Med. 1998;4(6):722–6. doi:10.1038/nm0698-722

Heilig M. Antisense inhibition of neuropeptide Y (NPY)-Y1 receptor expression blocks the anxiolytic-like action of NPY in amygdala and paradoxically increases feeding. Regul Pept. 1995;59(2):201–5. http://dx.doi. org/10.1016/0167-0115(95)00103-I

Heilig M, McLeod S, Brot M, Heinrichs S. Anxiolytic-like action of neuropeptide Y: mediation by Y1 receptors in amygdala, and dissociation from food intake effects. Neuropsychopharmacology. 1993 Jun;8(4):357-63. DOI: 10.1038/npp.1993.35

Lopez-Valpuesta F, Nyce J, Myers R. NPY-Y1 receptor antisense injected centrally in rats causes hyperthermia and feeding. Neuroreport. 1996 Nov 4;7(15-17):2781-4.

Biello S, Golombek D, Schak K. Circadian phase shifts to neuropeptide Y in vitro: cellular communication and signal transduction. J Neurosci. 1997 Nov 1;17(21):8468-75.

Golombek D, Biello S, Rendon R. Neuropeptide Y phase shifts the circadian clock in vitro via a Y2 receptor. Neuroreport. 1996 May 17;7(7):1315-9.

Shi T-J, Tandrup T, Bergman E, Xu Z-Q, Ulfhake B, Hökfelt T. Effect of peripheral nerve injury on dorsal root ganglion neurons in the C57 BL/6J mouse: marked changes both in cell numbers and neuropeptide expression. Neuroscience. 2001;105(1):249–63. http://

Kalra SP, Xu B, Dube MG, Moldawer LL, Martin D, Kalra PS. Leptin and ciliary neurotropic factor (CNTF) inhibit fasting-induced suppression of luteinizing hormone release in rats: role of neuropeptide Y. Neurosci Lett. 1998;240(1):45–9. 3940(97)00896-3

Kasuya E, Mizuno M, Watanabe G, Terasawa E. Effects of an antisense oligodeoxynucleotide for neuropeptide Y mRNA on in vivo luteinizing hormone-releasing hormone release in ovariectomized female rhesus monkeys. Regul Pept. 1998;75:319–25. 0115(98)00084-6

Pandey SC. Anxiety and alcohol abuse disorders: A common role for CREB and its target, the neuropeptide Y gene. Trends Pharmacol Sci. 2003 Sep;24(9):456-60. DOI: 10.1016/S0165-6147(03)00226-8

Thiele TE, Badia-Elder NE. A role for neuropeptide Y in alcohol intake control: evidence from human and animal research. Physiol Behav. 2003 Jun;79(1):95–101. http://

Thiele TE, Navarro M, Sparta DR, Fee JR, Knapp DJ, Cubero I. Alcoholism and obesity: overlapping neuropeptide pathways? Neuropeptides. 2003 Dec;37(6):321–37. npep.2003.10.002

Thiele TE, Sparta DR, Hayes DM, Fee JR. A role for neuropeptide Y in neurobiological responses to ethanol and drugs of abuse. Neuropeptides. 2004 Aug;38(4):235– 43. DOI: 10.1016/j.npep.2004.04.005

Alheid GF, Heimer L. New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience. 1988;27(1):1–39. 4522(88)90217-5

Davis M, Walker DL, Miles L, Grillon C. Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology. 2010;35(1):105–35. DOI: 10.1038/npp.2009.109

Gilpin NW, Herman MA, Roberto M. The Central Amygdala as an Integrative Hub for Anxiety and Alcohol Use Disorders. Biol Psychiatry. 2015 May;77(10):859– 69. DOI: 10.1016/j.biopsych.2014.09.008

Koob GF. A role for brain stress systems in addiction. Neuron. 2008;59(1):11–34. DOI: 10.1016/j. neuron.2008.06.012

Sun N, Cassell MD. Intrinsic GABAergic neurons in the rat central extended amygdala. J Comp Neurol. 1993;330:381–404. DOI: 10.1002/cne.903300308

Veinante P, Freund-Mercier M-J. Intrinsic and extrinsic connections of the rat central extended amygdala: an in vivo electrophysiological study of the central amygdaloid nucleus. Brain Res. 1998;794(2):188–98. http://dx.doi. org/10.1016/S0006-8993(98)00228-5

Roberto M, Gilpin NW, Siggins GR. The central amygdala and alcohol: Role of γ-aminobutyric acid, glutamate, and neuropeptides. Cold Spring Harb Perspect Med 2012;2:a012195–a012195. DOI: 10.1101/ cshperspect.a012195

Sakanaka M, Shibasaki T, Lederis K. Distribution and efferent projections of corticotropin-releasing factor-like immunoreactivity in the rat amygdaloid complex. Brain Res. 1986;382:213-238. DOI: 10.1016/0006- 8993(86)91332-6

Clark JT, Keaton AK, Sahu A, Kalra SP, Mahajan SC, Gudger JN. Neuropeptide Y (NPY) levels in alcoholic and food restricted male rats: implications for site selective function. Regul Pept. 1998;75-76:335-345. DOI: 10.1016/S0167-0115(98)00088-3

Thiele TE, Cubero I, Van Dijk G, Mediavilla C, Bernstein IL. Ethanol- Induced c- Fos Expression in Catecholamine- and Neuropeptide Y- Producing Neurons in Rat Brainstem. Alcohol Clin Exp Res. 2000;24(6):802– 9. DOI: 10.1111/j.1530-0277.2000.tb02059.x

Thiele TE, Marsh DJ, Ste Marie L, Bernstein IL, Palmiter RD. Ethanol consumption and resistance are inversely related to neuropeptide Y levels. Nature. 1998 Nov;396(6709):366–9. DOI: 10.1038/24614

Kinoshita H, Jessop DS, Finn DP, Coventry TL, Roberts DJ, Ameno K, et al. Acute ethanol decreases NPY mRNA but not POMC mRNA in the arcuate nucleus. Neuroreport. 2000;11(16):3517–9.

Roy A, Pandey SC. The decreased cellular expression of neuropeptide Y protein in rat brain structures during ethanol withdrawal after chronic ethanol exposure. Alcohol Clin Exp Res. 2002;26(6):796–803. DOI: 10.1111/j.1530-0277.2002.tb02607.x

Ehlers CL, Li TK, Lumeng L, Hwang BH, Somes C, Jimenez P, et al. Neuropeptide Y levels in ethanol-naive alcohol-preferring and nonpreferring rats and in Wistar rats after ethanol exposure. Alcohol Clin Exp Res. 1998;22(8):1778–82. DOI: 10.1111/j.1530-0277.1998. tb03979.x

Bison S, Crews F. Alcohol withdrawal increases neuropeptide Y immunoreactivity in rat brain. Alcohol Clin Exp Res. 2003;27(7):1173–83. DOI: 10.1097/01. ALC.0000075827.74538.FE

Becker HC, Diaz-Granados JL, Weathersby RT. Repeated ethanol withdrawal experience increases the severity and duration of subsequent withdrawal seizures in mice. Alcohol. 1997;14(4):319–26. S0741-8329(97)87949-9

Becker HC, Jaime LD, Hale RL. Exacerbation of ethanol withdrawal seizures in mice with a history of multiple withdrawal experience. Pharmacol Biochem Behav. 1997;57(1):179–83. 3057(96)00303-6

Woldbye DP, Ulrichsen J, Haugbol S, Bolwig TG. Ethanol withdrawal in rats is attenuated by intracerebroventricular administration of neuropeptide Y. Alcohol Alcohol. 2002;37(4):318–21. DOI: alcalc/37.4.318

Koob GF, Ahmed SH, Boutrel B, Chen SA, Kenny PJ, Markou A, et al. Neurobiological mechanisms in the transition from drug use to drug dependence. Neurosci Biobehav Rev. 2004;27(8):739–49. DOI: 10.1016/j. neubiorev.2003.11.007

Hyytiä P, Koob GF. GABAA receptor antagonism in the extended amygdala decreases ethanol self-administration in rats. Eur J Pharmacol. 1995;283(1):151–9. http://

Roberto M, Madamba SG, Moore SD, Tallent MK, Siggins GR. Ethanol increases GABAergic transmission at both pre-and postsynaptic sites in rat central amygdala neurons. Proc Natl Acad Sci USA. 2003;100(4):2053–8. DOI: 10.1073/pnas.0437926100

Roberto M, Madamba SG, Stouffer DG, Parsons LH, Siggins GR. Increased GABA release in the central amygdala of ethanol-dependent rats. J Neurosci. 2004;24(45):10159–66. DOI: 10.1523/ JNEUROSCI.3004-04.2004

Biggio G, Concas A, Follesa P, Sanna E, Serra M. Stress, ethanol, and neuroactive steroids. Pharmacol Ther. 2007;116(1):140–71. DOI: 10.1016/j. pharmthera.2007.04.005

Lambert PD, Anderson KD, Sleeman MW, Wong V, Tan J, Hijarunguru A, et al. Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity. Proc Natl Acad Sci USA. 2001;98(8):4652–7. doi: 10.1073/pnas.061034298

VanDoren MJ, Matthews DB, Janis GC, Grobin AC, Devaud LL, Morrow AL. Neuroactive steroid 3α-hydroxy- 5α-pregnan-20-one modulates electrophysiological and behavioral actions of ethanol. J Neurosci. 2000;20(5):1982–9.

Roberto M, Cruz MT, Gilpin NW, Sabino V, Schweitzer P, Bajo M, et al. Corticotropin Releasing Factor– Induced Amygdala Gamma-Aminobutyric Acid Release Plays a Key Role in Alcohol Dependence. Biol Psychiatry. 2010;67(9):831–9. doi: 10.1016/j. biopsych.2009.11.007.

Gilpin NW, Misra K, Herman MA, Cruz MT, Koob GF, Roberto M. Neuropeptide y opposes alcohol effects on gamma-aminobutyric acid release in amygdala and blocks the transition to alcohol dependence. Biol Psychiatry. 2011;69(11):1091–9. doi: 10.1016/j. biopsych.2011.02.004.

Sparrow AM, Lowery-Gionta EG, Pleil KE, Li C, Sprow GM, Cox BR, et al. Central neuropeptide Y modulates binge-like ethanol drinking in C57BL/6J mice via Y1 and Y2 receptors. Neuropsychopharmacology. 2012;37(6):1409–21. doi: 10.1038/npp.2011.327

Kash TL, Winder DG. Neuropeptide Y and corticotropin-releasing factor bi-directionally modulate inhibitory synaptic transmission in the bed nucleus of the stria terminalis. Neuropharmacology. 2006;51(5):1013–22. DOI: 10.1016/j.neuropharm.2006.06.011

Chen X, Dimaggio DA, Han SP, Westfall TC. Autoreceptor-induced inhibition of neuropeptide Y release from PC-12 cells is mediated by Y2 receptors. Am J Physiol-Heart Circ Physiol. 1997;273(4):H1737–44.

Greber S, Schwarzer C, Sperk G. Neuropeptide Y inhibits potassium- stimulated glutamate release through Y2 receptors in rat hippocampal slices in vitro. Br J Pharmacol. 1994;113(3):737–40.

Pich EM, Lorang M, Yeganeh M, De Fonseca FR, Raber J, Koob GF, et al. Increase of extracellular corticotropin-releasing factor-like immunoreactivity levels in the amygdala of awake rats during restraint stress and ethanol withdrawal as measured by microdialysis. J Neurosci. 1995;15(8):5439–47.

Rassnick S, Heinrichs SC, Britton KT, Koob GF. Microinjection of a corticotropin-releasing factor antagonist into the central nucleus of the amygdala reverses anxiogenic-like effects of ethanol withdrawal. Brain Res. 1993;605(1):25–32.

Funk D, Li Z, Le AD. Effects of environmental and pharmacological stressors on c-fos and corticotropin-releasing factor mRNA in rat brain: relationship to the reinstatement of alcohol seeking. Neuroscience. 2006;138(1):235–43. DOI: 10.1016/j. neuroscience.2005.10.062

Thorsell A, Repunte-Canonigo V, O’Dell LE, Chen SA, King AR, Lekic D, et al. Viral vector-induced amygdala NPY overexpression reverses increased alcohol intake caused by repeated deprivations in Wistar rats. Brain. 2007;130(5):1330–7. DOI: 10.1093/brain/awm033

Gilpin NW, Misra K, Koob GF. Neuropeptide Y in the central nucleus of the amygdala suppresses dependence-induced increases in alcohol drinking. Pharmacol Biochem Behav. 2008;90(3):475–80. DOI: 10.1016/j. pbb.2008.04.006

Ceccanti M, Hamilton D, Coriale G, Carito V, Aloe L, Chaldakov G, et al. Spatial learning in men undergoing alcohol detoxification. Physiol Behav. 2015;149:324–30. DOI: 10.1016/j.physbeh.2015.06.034

Ceccanti M. et al. Serum BDNF and NGF Modulation by Olive Polyphenols in Alcoholics during Withdrawal. J Alcohol & Drug Dep 2015, 3:214. doi:10.4172/23296488.1000214

Koob GF. Theoretical frameworks and mechanistic aspects of alcohol addiction: alcohol addiction as a reward deficit disorder. In: Behavioral Neurobiology of Alcohol Addiction. Springer; 2011. p. 3–30. DOI: 10.1007/7854_2011_129

Heilig M, Wahlestedt C, Widerlöv E. Neuropeptide Y (NPY)-induced suppression of activity in the rat: evidence for NPY receptor heterogeneity and for interaction with alpha-adrenoceptors. Eur J Pharmacol. 1988;157(2– 3):205–13.

Gilpin NW, Stewart RB, Badia-Elder NE. Neuropeptide Y administration into the amygdala suppresses ethanol drinking in alcohol-preferring (P) rats following multiple deprivations. Pharmacol Biochem Behav. 2008;90(3):470–4. DOI: 10.1016/j.pbb.2008.04.005

Breese GR, Overstreet DH, Knapp DJ. Conceptual framework for the etiology of alcoholism: a “kindling”/ stress hypothesis. Psychopharmacology (Berl). 2005;178(4):367–80. DOI: 10.1007/s00213-004-2016-2

Zhang H, Pandey SC. Effects of PKA modulation on the expression of neuropeptide Y in rat amygdaloid structures during ethanol withdrawal. Peptides. 2003;24(9):1397– 402.

Cippitelli A, Damadzic R, Hansson AC, Singley E, Sommer WH, Eskay R, et al. Neuropeptide y (NPY) suppresses yohimbine-induced reinstatement of alcohol seeking. Psychopharmacology (Berl). 2010;208(3):417– 26. DOI: 10.1007/s00213-009-1741-y

Thorsell A, Rimondini R, Heilig M. Blockade of central neuropeptide Y (NPY) Y2 receptors reduces ethanol self-administration in rats. Neurosci Lett. 2002;332(1):1–4.

Rimondini R, Thorsell A, Heilig M. Suppression of ethanol self-administration by the neuropeptide Y (NPY) Y2 receptor antagonist BIIE0246: Evidence for sensitization in rats with a history of dependence. Neurosci Lett. 2005;375(2):129–33. DOI: 10.1016/j. neulet.2004.10.084

Cippitelli A, Rezvani AH, Robinson JE, Eisenberg L, Levin ED, Bonaventure P, et al. The novel, selective, brain-penetrant neuropeptide Y Y2 receptor antagonist, JNJ-31020028, tested in animal models of alcohol consumption, relapse, and anxiety. Alcohol. 2011;45(6):567–76. DOI: 10.1016/j.alcohol.2010.09.003

Hendry SHC. Organization of neuropeptide Y neurons in the mammalian central nervous system. In: The Biology of Neuropeptide Y and Related Peptides. Springer; 1993. p. 65–156. DOI 10.1007/978-1-59259-465-8_3

Koob GF. Alcoholism: allostasis and beyond. Alcohol Clin Exp Res. 2003;27(2):232–43. DOI: 10.1097/01. ALC.0000057122.36127.C2

Brown CM, Coscina DV, Fletcher PJ. The rewarding properties of neuropeptide Y in perifornical hypothalamus vs. nucleus accumbens. Peptides. 2000;21(8):1279–87. 9781(00)00270-9

Josselyn SA, Beninger RJ. Neuropeptide Y: intraaccumbens injections produce a place preference that is blocked by cis-flupenthixol. Pharmacol Biochem Behav. 1993;46(3):543–52. 3057(93)90542-2

Misra K, Pandey SC. Differences in Basal Levels of CREB and NPY in Nucleus Accumbens Regions between C57BL/6 and DBA/2 Mice Differing in Inborn Alcohol Drinking Behavior. J Neurosci Res. 2003;74(6):967–75. DOI: 10.1002/jnr.10831

Thiele TE, Koh MT, Pedrazzini T. Voluntary alcohol consumption is controlled via the neuropeptide Y Y1 receptor. J Neurosci Off J Soc Neurosci. 2002;22:RC208- RC208.

Thiele TE, Naveilhan P, Ernfors P. Assessment of ethanol consumption and water drinking by NPY Y2 receptor knockout mice. Peptides. 2004;25(6):975–83. DOI: 10.1016/j.peptides.2004.03.009

Palmiter RD, Erickson JC, Hollopeter G, Baraban SC, Schwartz MW. Life without neuropeptide Y. Recent Prog Horm Res. 1998;53:163–99.

Naveilhan P, Neveu I, Arenas E, Ernfors P. Complementary and overlapping expression of Y1, Y2 and Y5 receptors in the developing and adult mouse nervous system. Neuroscience. 1998;87(1):289–302. http://dx.doi. org/10.1016/S0306-4522(98)00141-9

King PJ, Williams G, Doods H, Widdowson PS. Effect of a selective neuropeptide YY 2 receptor antagonist, BIIE0246 on neuropeptide Y release. Eur J Pharmacol. 2000;396(1):R1–3. 2999(00)00230-2

Smith-White MA, Hardy TA, Brock JA, Potter EK. Effects of a selective neuropeptide Y Y2 receptor antagonist, BIIE0246, on Y2 receptors at peripheral neuroeffector junctions. Br J Pharmacol. 2001;132(4):861–8. DOI: 10.1038/sj.bjp.0703879

Berglund MM, Schober DA, Statnick MA, McDonald PH, Gehlert DR. The use of bioluminescence resonance energy transfer 2 to study neuropeptide Y receptor agonist-induced β-arrestin 2 interaction. J Pharmacol Exp Ther. 2003;306(1):147–56. DOI: 10.1124/ jpet.103.051227

Caberlotto L, Thorsell A, Rimondini R, Sommer W, Hyytiä P, Heilig M. Differential expression of NPY and its receptors in alcohol-preferring AA and alcohol-avoiding ANA rats. Alcohol Clin Exp Res. 2001;25(11):1564–9. DOI: 10.1111/j.1530-0277.2001.tb02162.x

Thiele TE, Miura GI, Marsh DJ, Bernstein IL, Palmiter RD. Neurobiological responses to ethanol in mutant mice lacking neuropeptide Y or the Y5 receptor. Pharmacol Biochem Behav. 2000;67(4):683–91. http://dx.doi. org/10.1016/S0091-3057(00)00413-5

Kelley SP, Nannini MA, Bratt AM, Hodge CW. Neuropeptide-Y in the paraventricular nucleus increases ethanol self-administration. Peptides. 2001;22(3):515–22. 9781(01)00361-8

Schroeder JP, Olive F, Koenig H, Hodge CW. Intra-amygdala infusion of the NPY Y1 receptor antagonist BIBP 3226 attenuates operant ethanol self-administration. Alcohol Clin Exp Res. 2003;27(12):1884–91. DOI: 10.1097/01.ALC.0000098875.95923.69

Schroeder JP, Iller KA, Hodge CW. Neuropeptide- Y Y5 Receptors Modulate the Onset and Maintenance of Operant Ethanol Self- Administration. Alcohol Clin Exp Res. 2003;27(12):1912–20. DOI: 10.1097/01. ALC.0000098873.80433.BA

Ceccanti M, Mancinelli R, Tirassa P, Laviola G, Rossi S, Romeo M, et al. Early exposure to ethanol or red wine and long-lasting effects in aged mice. A study on nerve growth factor, brain-derived neurotrophic factor, hepatocyte growth factor, and vascular endothelial growth factor. Neurobiol Aging. 2010;33(2):359–67. DOI: 10.1016/j. neurobiolaging.2010.03.005

Fiore M, Laviola G, Aloe L, di Fausto V, Mancinelli R, Ceccanti M. Early exposure to ethanol but not red wine at the same alcohol concentration induces behavioral and brain neurotrophin alterations in young and adult mice. Neurotoxicology. 2009;30(1):59–71. DOI: 10.1016/j. neuro.2008.11.009

Ceccanti M, De Nicolo S, Mancinelli R, Chaldakov G, Carito V, Laviola G, et al. NGF and BDNF long-term variations in the thyroid, testis and adrenal glands of a mouse model of fetal alcohol spectrum disorders. Ann Ist Super Sanita. 2013;49(4):383–90. DOI: 10.4415/ ANN_13_04_11

Fiore M., Mancinelli R., Laviola G., Aloe L., Sornelli F., Ceccanti M. Hepatocyte growth factor, vascular endothelial growth factor, glial cell-derived neurotrophic factor and nerve growth factor are differentially affected by early chronic ethanol or red wine intake. Toxicol Let 2009, 188:208-213. DOI: 10.1016/j.toxlet.2009.04.013

Carito V, Ceccanti M, Cestari V, Natella F, Bello C, Coccurello R, et al. Olive polyphenol effects in a mouse model of chronic ethanol addiction. Nutrition. 2017;33:65–9. DOI: 10.1016/j.nut.2016.08.014

Camarini R, Marcos Pautassi R, Méndez M, Marian Quadros I, Lucia Souza-Formigoni M, Boerngen- Lacerda R. Behavioral and neurochemical studies in distinct animal models of ethanol’s motivational effects. Curr Drug Abuse Rev. 2010;3(4):205–21. DOI: 10.2174/1874473711003040205

Li TK, Lumeng L, Doolittle DP, Carr LG. Molecular associations of alcohol-seeking behavior in rat lines selectively bred for high and low voluntary ethanol drinking. Alcohol Alcohol Oxf Oxfs Suppl. 1991;1:121– 121.

Cicero TJ. A critique of animal analogues of alcoholism. Biochem Pharmacol Ethanol. 1979;2:533–60.

McBride WJ, Li TK. Animal models of alcoholism: neurobiology of high alcohol-drinking behavior in rodents. Crit Rev Neurobiol. 1998;12:339-369.

Murphy JM, Stewart RB, Bell RL, Badia-Elder NE, Carr LG, McBride WJ, et al. Phenotypic and genotypic characterization of the Indiana University rat lines selectively bred for high and low alcohol preference. Behav Genet. 2002;32:363-388. DOI: 10.1023/A:1020266306135

E h l e r s C L , S o m e s C , L u m e n g L , L i T K . Electrophysiological response to neuropeptide Y (NPY): In alcohol-naive preferring and non-preferring rats. Pharmacol Biochem Behav. 1999;63(2):291–9. DOI: 10.1016/S0091-3057(99)00012-X

Hwang BH, Zhang JK, Ehlers CL, Lumeng L, Li TK. Innate differences of neuropeptide Y (NPY) in hypothalamic nuclei and central nucleus of the amygdala between selectively bred rats with high and low alcohol preference. Alcohol Clin Exp Res. 1999;23:1023–30. DOI: 10.1111/j.1530-0277.1999.tb04220.x

Badia-Elder NE, Stewart RB, Powrozek TA, Roy KF, Murphy JM, Li TK. Effect of neuropeptide Y (NPY) on oral ethanol intake in Wistar, alcohol-preferring (P), and -nonpreferring (NP) rats. Alcohol Clin Exp Res. 2001;25(3):386–90. DOI: 10.1111/j.1530-0277.2001. tb02225.x

Badia-Elder NE, Stewart RB, Powrozek TA, Murphy JM, Li TK, Badia-Elder NE, et al. Effects of neuropeptide Y on sucrose and ethanol intake and on anxiety- like behavior in high alcohol drinking (HAD) and low alcohol drinking (LAD) rats. Alcohol Clin Exp Res. 2003;27(6):894–9. DOI: 10.1097/01. ALC.0000071929.17974.DA

Gilpin NW, Stewart RB, Murphy JM, Li T-K, Badia-Elder NE. Neuropeptide Y reduces oral ethanol intake in alcohol-preferring (P) rats following a period of imposed ethanol abstinence. Alcohol Clin Exp Res. 2003;27(5):787–94. DOI: 10.1097/01.ALC.0000065723.93234.1D

Bice P, Foroud T, Bo R, Castelluccio P, Lumeng L, Li T-K, et al. Genomic screen for QTLs underlying alcohol consumption in the P and NP rat lines. Mamm Genome. 1998;9(12):949–55. DOI: 10.1007/s003359900905

Carr LG, Foroud T, Bice P, Gobbett T, Ivashina J, Edenberg H, et al. A quantitative trait locus for alcohol consumption in selectively bred rat lines. Alcohol Clin Exp Res. 1998;22(4):884–7. DOI: 10.1111/j.1530- 0277.1998.tb03883.x

Terenina-Rigaldie E, Moisan M-P, Colas A, Beaugé F, Shah KV, Jones BC, et al. Genetics of behaviour: phenotypic and molecular study of rats derived from high-and low-alcohol consuming lines. Pharmacogenet Genomics. 2003;13(9):543–54. DOI: 10.1097/01. fpc.0000054120.14659.8c

Carr LG, Kimpel MW, Liang T, McClintick JN, McCall K, Morse M, et al. Identification of candidate genes for alcohol preference by expression profiling of congenic rat strains. Alcohol Clin Exp Res. 2007;31(7):1089–98. DOI: 10.1111/j.1530-0277.2007.00397.x

Spence J, Liang T, Foroud T, Lo D, Carr L. Expression profiling and QTL analysis: a powerful complementary strategy in drug abuse research. Addict Biol. 2005;10(1):47– 51. DOI: 10.1080/13556210412331308958

Lappalainen J, Kranzler HR, Malison R, Price LH, Van Dyck C, Rosenheck RA, et al. A functional neuropeptide Y Leu7Pro polymorphism associated with alcohol dependence in a large population sample from the United States. Arch Gen Psychiatry. 2002;59(9):825–31. doi:10.1001/archpsyc.59.9.825

Zhu G, Pollak L, Mottagui-Tabar S, Wahlestedt C, Taubman J, Virkkunen M, et al. NPY Leu7Pro and alcohol dependence in Finnish and Swedish populations. Alcohol Clin Exp Res. 2003;27:19-24. DOI: 10.1097/01. ALC.0000050642.62233.44

Stewart R, Gatto G, Lumeng L, Li T-K, Murphy J. Comparison of alcohol-preferring (P) and nonpreferring (NP) rats on tests of anxiety and for the anxiolytic effects of ethanol. Alcohol. 1993;10:1-10. DOI: 10.1016/0741- 8329(93)90046-Q

McKinzie D, Sajdyk T, McBride W, Murphy J, Lumeng L, Li T-K, et al. Acoustic startle and fear-potentiated startle in alcohol-preferring (P) and-nonpreferring (NP) lines of rats. Pharmacol Biochem Behav 2000;65:691-696. DOI: 10.1016/S0091-3057(99)00252-X

Sajdyk TJ, Johnson PL, Leitermann RJ, Fitz SD, Dietrich A, Morin M, et al. Neuropeptide Y in the amygdala induces long-term resilience to stress-induced reductions in social responses but not hypothalamic–adrenal–pituitary axis activity or hyperthermia. J Neurosci. 2008;28:893-903. DOI:10.1523/JNEUROSCI.0659-07.2008



Article Tools
Email this article (Login required)
About The Authors

Stefania Ciafrè
Institute of Translational Pharmacology, CNR, Rome, Italy

Marco Fiore
Institute of Cell Biology and Neurobiology, CNR/IRCCS, S. Lucia Foundation, Rome, Italy

Mauro Ceccanti
Centro Riferimento Alcologico Regione Lazio, Sapienza University of Rome, Italy

Marisa Patrizia Messina
Centro Riferimento Alcologico Regione Lazio, Sapienza University of Rome, Italy

Paola Tirassa
Institute of Cell Biology and Neurobiology, CNR/IRCCS, S. Lucia Foundation, Rome, Italy

Valentina Carito
Institute of Cell Biology and Neurobiology, CNR/IRCCS, S. Lucia Foundation, Rome, Italy

Font Size