Scientific Online Resource System

Biomedical Reviews

Vitamin K: The New Faces of an Old Friend - a Role in Bone and Vascular Health

Maria Zhelyazkova-Savova, Silvia Gancheva, Bistra Galunska, Daniela Gerova

Abstract

There is an exciting research expansion on the novel roles of vitamin K in the last decades. Subclinical deficiency in vitamin K is believed to be widely spread, possibly contributing to age-related diseases. The present review is focused on the effects of vitamin K on the skeleton and blood vessels, where it could be potentially useful in the prevention and treatment of osteoporosis and vascular calcification, both having a significant health impact in the society. The types (K1 and K2), nature and sources of vitamin K are reviewed as well as the mechanisms of action underlying their effects. Gamma-glutamic carboxylation of several vitamin K dependent proteins (VKDP), including clotting factors, is the primary mode of action of vitamin K, lead-ing to activation of proteins with specific functions. Priority was given to those VKDP that are involved in maintaining bone and vascular health. Other recently identified cellular transduction pathways through which vitamin K acts are also outlined. Experimental in vivo data confirming the expected beneficial effects of vitamin K on bones and blood vessels have paved the way for clinical studies. So far, the evidence from clinical experience with vitamin K supplementation is promising, but still insufficient to recommend routine use of vitamin K as a preventive agent. Several prospective randomized controlled clinical studies currently in progress are expected to give more clear-cut results allowing the routine use of vitamin K as a reliable, cheap and safe medication in the prevention of bone loss and vascular calcification. Biomed Rev 2017; 28: 70-90

 

Keywords: vitamin K, osteocalcin, matrix Gla-protein, osteoporosis, vascular calcification


Full Text


References

Ames BN. Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. Proc Natl Acad Sci USA 2006; 103(47): 17589–17594. DOI: 10.1073/pnas.0608757103.

Beulens JWJ, Booth SL, van den Heuvel EG, Stoecklin E, Baka A, Vermeer C. The role of menaquinones (vitamin K2) in human health. Br J Nutr 2013; 110: 1357–1368. DOI: 10.1017/S0007114513001013.

Hirota Y, Tsugawa N, Nakagawa K, Suhara Y, Tanaka K, Uchino Y, et al. Menadione (Vitamin K3) is a catabolic product of oral phylloquinone (Vitamin K1) in the intestine and a circulating precursor of tissue menaquinone-4 (Vitamin K2) in rats. J Biol Chem 2013; 288(46): 33071–33080. DOI: 10.1074/jbc.M113.477356.

Shearer MJ, Fu X, Booth SL. Vitamin K, nutrition, metabolism, and requirments: Current concepts and future research. Adv Nutr 2012; 3: 182–195. DOI: 10.3945/an.111.001800.

Kohlmeier M, Salomon A, Saupe J, Shearer MJ. Transport of vitamin K to bone in humans. J Nutr 1996; 126(4): 1192S–1196S.

Schurgers LJ, Teunissen KJ, Hamulyak K, Knapen MH, Vik H, Vermeer C. Vitamin K-containing diet supplements: comparison of synthetic vitamin K1 and nattoderived menaquinone-7. Blood 2007; 109: 3279–3283. DOI: 10.1182/blood-2006-08-040709.

Thijssen HHW, Drittij-Reijnders MJ. Vitamin K status in human tissues: tissue-specific accumulation of phylloquinone and menaquinone-4. Br J Nutr 1996;75: 121–127

Okano T, Shimomura Y, Yamane M, Suhara Y, Kamao M, Sugiura M, et al. Conversion of phylloquinone (Vitamin K1) into menaquinone-4 (Vitamin K2) in mice. J Biol Chem 2008; 283(17): 11270–11279. DOI: 10.1074/jbc.M702971200.

Card DJ, Gorska R, Cutler J, Harrington DJ. Vitamin K metabolism: current knowledge and future research. Mol Nutr Food Res 2014; 58(8):1590–1600. DOI: 10.1002/mnfr.201300683.

Nakagawa K, Hirota Y, Sawada N, Yuge N, Watanabe M, Uchino Y, et al. Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature 2010; 468: 117–121. DOI:10.1038/nature09464.

Kresge N, Simoni RD, Hill RL. The finding that prothrombin contains γ-carboxyglutamic acid: the work of Johan Stenflo. J Biol Chem 2009; 284(18): e1.

Szulc P, Chapuy MC, Meunier PJ, Delmas PD. Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women. J Clin Invest 1993; 91: 1769–1774.

Mawatari T, Miura H, Higaki H, Moro-Oka T, Kurata K, Murakami T, et al. Effect of vitamin K2 on threedimensional trabecular microarchitecture in ovariectomized rats. J Bone Miner Res 2000; 15(9): 1810–1817.

Kobayashi M, Hara K, Akiyama Y. Effects of vitamin K2 (menatetrenone) on calcium balance in ovariectomized rats. Jpn J Pharmacol 2002; 88(1): 55–61.

Iwamoto I, Kosha S, Fujino T, Nagata Y. Effects of vitamin K2 on bone of ovariectomized rats and on a rat osteoblastic cell line. Gynecol Obstet Invest 2002; 53(3): 144–148.

Iwamoto J, Yeh JK, Schmidt A, Rowley E, Stanfield L, Takeda T, et al. Raloxifene and vitamin K2 combine to improve the femoral neck strength of ovariectomized rats. Calcif Tissue Int 2005; 77(2): 119–126. DOI: 10.1007/s00223-004-0277-8.

Nagura N, Komatsu J, Iwase H, Hosoda H, Ohbayashi O, Nagaoka I, et al. Effects of the combination of vitamin K and teriparatide on the bone metabolism in ovariectomized rats. Biomed Rep 2015; 3(3): 295–300. DOI: 10.3892/br.2015.431.

Huang Y. Combined treatment of vitamin K and teriparatide on bone metabolism and biomechanics in rats with osteoporosis. Exp Ther Med 2017; 15: 315–319. DOI: 10.3892/etm.2017.5420.

Yamaguchi M, Taguchi H, Gao YH, Igarashi A, Tsukamoto Y. Effect of vitamin K2 (menaquinone-7) in fermented soybean (natto) on bone loss in ovariectomized rats. J Bone Miner Metab 1999; 17(1): 23–29.

Fu X, Moreines J, Booth SL. Vitamin K supplementation does not prevent bone loss in ovariectomized Norway rats. Nutr Metab (Lond) 2012; 9(1): 12. DOI: 10.1186/1743-7075-9-12.

Iwamoto J, Yeh JK, Takeda T. Effect of vitamin K2 on cortical and cancellous bones in orchidectomized and/ or sciatic neurectomized rats. J Bone Miner Res 2003; 18(4): 776–783.

Hara K, Kobayashi M, Akiyama Y. Vitamin K2 (menatetrenone) inhibits bone loss induced by prednisolone partly through enhancement of bone formation in rats. Bone 2002; 31(5): 575–581.

Iwamoto J, Seki A, Sato Y, Matsumoto H, Tadeda T, Yeh JK. Vitamin K2 promotes bone healing in a rat femoral osteotomy model with or without glucocorticoid treatment. Calcif Tissue Int 2010; 86(3): 234–241. DOI: 10.1007/s00223-010-9333-8.

Onodera K, Takahashi A, Sakurada S, Okano Y. Effects of phenytoin and/or vitamin K2 (menatetrenone) on bone mineral density in the tibiae of growing rats. Life Sci 2002; 70(13): 1533–1542.

Onodera K, Takahashi A, Wakabayashi H, Kamei J, Sakurada S. Effects of menatetrenone on the bone and serum levels of vitamin K2 (menaquinone derivatives) in osteopenia induced by phenytoin in growing rats. Nutrition 2003; 19(5): 446–450.

Feskanich D, Weber P, Willett WC, Rockett H, Booth SL, Colditz GA. Vitamin K intake and hip fractures in women: a prospective study. Am J Clin Nutr 1999; 69: 74–79.

Kaneki M, Hodges SJ, Hosoi T, Fujiwara S, Lyons A, Crean SJ, et al. Japanese fermented soybean food as the major determinant of the large geographic difference in circulating levels of vitamin K2: possible implications for hip-fracture risk. Nutrition 2001; 17(4): 315–321.

Yaegashi Y, Onoda T, Tanno K, Kuribayashi T, Sakata K, Orimo H. Association of hip fracture incidence and intake of calcium, magnesium, vitamin D, and vitamin K. Eur J Epidemiol 2008; 23(3): 219–225. DOI: 10.1007/s10654-008-9225-7.

Booth SL, Tucker KL, Chen H, Hannan MT, Gagnon DR, Cupples LA, et al. Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. Am J Clin Nutr 2000; 71(5): 1201–1208.

Apalset EM, Gjesdal CG, Eide GE, Tell GS. Intake of vitamin K1 and K2 and risk of hip fractures: The Hordaland Health Study. Bone 2011; 49(5): 990–995. DOI: 10.1016/j.bone.2011.07.035.

Ikeda Y, Iki M, Morita A, Kajita E, Kagamimori S, Kagawa Y, et al. Intake of fermented soybeans, natto, is associated with reduced bone loss in postmenopausal women: Japanese Population-Based Osteoporosis (JPOS) Study. J Nutr 2006; 136(5): 1323–1328.

Macdonald HM, McGuigan FE, Lanham-New SA, Fraser WD, Ralston SH, Reid DM. Vitamin K1 intake is associated with higher bone mineral density and reduced bone resorption in early postmenopausal Scottish women: no evidence of gene-nutrient interaction with apolipoprotein E polymorphisms. Am J Clin Nutr 2008; 87(5): 1513–1520.

Rejnmark L, Vestergaard P, Charles P, Hermann AP, Brot C, Eiken P, et al. No effect of vitamin K1 intake on bone mineral density and fracture risk in perimenopausal women. Osteoporos Int 2006; 17(8): 1122-1132. DOI: 10.1007/s00198-005-0044-3.

McLean RR, Booth SL, Kiel DP, Broe KE, Gagnon DR, Tucker KL, et al. Association of dietary and biochemical measures of vitamin K with quantitative ultrasound of the heel in men and women. Osteoporos Int 2006; 17(4): 600–607. DOI: 10.1007/s00198-005-0022-9.

Fujita Y, Iki M, Tamaki J, Kouda K, Yura A, Kadowaki E, et al. Association between vitamin K intake from fermented soybeans, natto, and bone mineral density in elderly Japanese men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) study. Osteoporos Int 2012; 23(2): 705–714. DOI: 10.1007/s00198-011-1594-1.

Hao G, Zhang B, Gu M, Chen C, Zhang Q, Zhang G, et al. Vitamin K intake and the risk of fractures: A metaanalysis. Medicine (Baltimore) 2017; 96(17): e6725. DOI:10.1097/MD.0000000000006725.

Shiraki M, Shiraki Y, Aoki C, Miura M. Vitamin K2 (menatetrenone) effectively prevents fractures and sustains lumbar bone mineral density in osteoporosis. J Bone Miner Res 2000; 15(3): 515–521.

Iwamoto J, Takeda T, Ichimura S. Effect of combined administration of vitamin D3 and vitamin K2 on bone mineral density of the lumbar spine in postmenopausal women with osteoporosis. J Orthop Sci 2000; 5(6): 546–551.

Ushiroyama T, Ikeda A, Ueki M. Effect of continuous combined therapy with vitamin K(2) and vitamin D(3) on bone mineral density and coagulofibrinolysis function in postmenopausal women. Maturitas 2002; 41(3): 211–221.

Cheung AM, Tile L, Lee Y, Tomlinson G, Hawker G, Scher J, et al. Vitamin K supplementation in postmeno- pausal women with osteopenia (ECKO trial): a randomized controlled trial. PLoS Med 2008; 5(10): e196. DOI: 10.1371/journal.pmed.0050196.

Booth SL, Dallal G, Shea MK, Gundberg C, Peterson JW, Dawson-Hughes B. Effect of vitamin K supplementation on bone loss in elderly men and women. J Clin Endocrinol Metab 2008; 93(4): 1217–1223. DOI: 10.1210/jc.2007-2490.

Binkley N, Harke J, Krueger D, Engelke J, Vallarta-Ast N, Gemar D, et al. Vitamin K treatment reduces undercarboxylated osteocalcin but does not alter bone turnover, density, or geometry in healthy postmenopausal North American women. J Bone Miner Res 2009; 24(6): 983–991. DOI: 10.1359/JBMR.081254.

Inoue T, Fujita T, Kishimoto H, Makino T, Nakamura T, Nakamura T, et al. Randomized controlled study on the prevention of osteoporotic fractures (OF study): a phase IV clinical study of 15-mg menatetrenone capsules. J Bone Miner Metab 2009; 27(1): 66–75. DOI: 10.1007/s00774-008-0008-8.

Emaus N, Gjesdal CG, Almas B, Christensen M, Grimsgaard AS, Berntsen GKR, et al. Vitamin K2 supplementation does not influence bone loss in early menopausal women: a randomised double-blind placebo-controlled trial. Osteoporos Int 2010; 21(10): 1731–1740. DOI 10.1007/s00198-009-1126-4.

Kanellakis S, Moschonis G, Tenta R, Schaafsma A, van den Heuvel EG, Papaioannou N, et al. Changes in parameters of bone metabolism in postmenopausal women following a 12-month intervention period using dairy products enriched with calcium, vitamin D, and phylloquinone

(vitamin K(1)) or menaquinone-7 (vitamin K (2)): the Postmenopausal Health Study II. Calcif Tissue Int 2012; 90(4): 251–262. DOI: 10.1007/s00223-012-9571-z.

Koitaya N, Sekiguchi M, Tousen Y, Nishide Y, Morita A, Yamauchi J, et al. Low-dose vitamin K2 (MK-4) supplementation for 12 months improves bone metabolism and prevents forearm bone loss in postmenopausal Japanese women. J Bone Miner Metab 2014; 32(2): 142–150. DOI: 10.1007/s00774-013-0472-7.

Cockayne S, Adamson J, Lanham-New S, Shearer MJ, Gilbody S, Torgerson DJ. Vitamin K and the prevention of fractures: systematic review and meta-analysis of randomized controlled trials. Arch Intern Med 2006; 166(12): 1256–1261.

Iwamoto J. Vitamin K₂ therapy for postmenopausal osteoporosis. Nutrients 2014; 6(5): 1971–1980. DOI: 10.3390/nu6051971.

Guralp O, Erel CT. Effects of vitamin K in postmenopausal women: mini review. Maturitas 2014; 77(3): 294–299. DOI: 10.1016/j.maturitas.2013.11.002.

Caraballo PJ, Heit JA, Atkinson EJ, Silverstein MD, O’Fallon WM, Castro MR, et al. Long-term use of oral anticoagulants and the risk of fracture. Arch Intern Med 1999; 159(15):1750–1756.

Misra D, Zhang Y, Peloquin C, Choi HK, Kiel DP, Neogi T. Incident long-term warfarin use and risk of osteoporotic fractures: propensity-score matched cohort of elders with new onset atrial fibrillation. Osteoporos Int 2014; 25(6): 1677–1684. DOI: 10.1007/s00198-014-2662-0.

Barnes C, Newall F, Ignjatovic V, Wong P, Cameron F, Jones G, et al. Reduced bone density in children on long-term warfarin. Pediatr Res 2005; 57(4): 578–581. DOI: 10.1203/01.PDR.0000155943.07244.04.

Fusaro M, Tripepi G, Noale M, Plebani M, Zaninotto M, Piccoli A, et al. Prevalence of vertebral fractures, vascular calcifications, and mortality in warfarin treated hemodialysis patients. Curr Vasc Pharmacol 2015; 13(2): 248–258. DOI: 10.2174/15701611113119990146.

Pauli RM. Mechanism of bone and cartilage maldevelopment in the warfarin embryopathy. Pathol Immunopathol Res 1988; 7(1-2): 107–112.

Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, et al. Increased bone formation in osteocalcin-deficient mice. Nature 1996; 382(6590): 448–452.

Azuma K, Shiba S, Hasegawa T, Ikeda K, Urano T, Horie-Inoue K, et al. Osteoblast-Specific γ-Glutamyl Carboxylase-Deficient Mice Display Enhanced Bone Formation With Aberrant Mineralization. J Bone Miner Res 2015; 30(7): 1245–1254. DOI: 10.1111/ggi.12060.

Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty G. Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 1998; 23(3): 187–196.

Poundarik AA, Diab T, Sroga GE, Ural A, Boskey AL, Gundberg CM, et al. Dilatational band formation in bone. Proc Natl Acad Sci USA 2012; 109(47): 19178–19183. DOI: 10.1073/pnas.1201513109.

Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 1997; 386(6620): 78–81.

Marulanda J, Gao C, Roman H, Henderson JE, Murshed M. Prevention of arterial calcification corrects the low bone mass phenotype in MGP-deficient mice. Bone 2013; 57(2): 499–508. DOI: 10.1016/j.bone.2013.08.021.

Bonnet N, Garnero P, Ferrari S. Periostin action in bone. Mol Cell Endocrinol 2016; 432: 75–82. DOI: 10.1016/j.mce.2015.12.014.

Zhu S, Barbe MF, Liu C, Hadjiargyrou M, Popoff SN, Rani S, et al. Periostin-like-factor in osteogenesis. J Cell Physiol 2009; 218(3): 584–592. DOI: 10.1002/jcp.21633.

Tabb MM, Sun A, Zhou C, Grün F, Errandi J, Romero K, et al. Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J Biol Chem 2003; 278(45): 43919–43927. DOI: 10.1074/jbc.M303136200.

Horie-Inoue K, Inoue S. Steroid and xenobiotic receptor mediates a novel vitamin K2 signaling pathway in osteoblastic cells. J Bone Miner Metab 2008; 26(1): 9–12. DOI: 10.1007/s00774-007-0792-6.

Atkins GJ, Welldon KJ, Wijenayaka AR, Bonewald LF, Findlay DM. Vitamin K promotes mineralization, osteoblast-to-osteocyte transition, and an anticatabolic phenotype by {gamma}-carboxylation-dependent and –independent mechanisms. Am J Physiol Cell Physiol 2009; 297(6): C1358–1367. DOI:10.1152/ajpcell.00216.2009.

Ichikawa T, Horie-Inoue K, Ikeda K, Blumberg B, Inoue S. Vitamin K2 induces phosphorylation of protein kinase A and expression of novel target genes in osteoblastic cells. J Mol Endocrinol 2007; 39(4): 239–247. DOI: 10.1677/JME-07-0048.

Novack DV. Role of NF-κB in the skeleton. Cell Res 2011; 21: 169–182. DOI:10.1038/cr.2010.159.

Yamaguchi M, Weitzmann MN. Vitamin K2 stimulates osteoblastogenesis and suppresses osteoclastogenesis by suppressing NF-κB activation. Int J Mol Med 2011; 27(1): 3–14. DOI: 10.3892/ijmm.2010.562.

Rubinacci A. Expanding the functional spectrum of vitamin K in bone. Focus on: “Vitamin K promotes mineralization, osteoblast to osteocyte transition, and an anticatabolic phenotype by {gamma}-carboxylation-dependent and -independent mechanisms”. Am J Physiol Cell Physiol 2009; 297(6): C1336–1338. DOI:10.1152/ajpcell.00452.2009.

Giachelli CM. Vascular calcification mechanisms. J Am Soc Nephrol 2004;15(12): 2959–2964. DOI: 10.1097/01.ASN.0000145894.57533.C4.

Mizobuchi M, Towler D, Slatopolsky E. Vascular calcification: the killer of patients with chronic kidney disease. J Am Soc Nephrol 2009; 20(7): 145 –164. DOI: 10.1681/ASN.2008070692.

Schurgers LJ. Vitamin K: key vitamin in controlling vascular calcification in chronic kidney disease. Kidney Int 2013; 83(5): 782–784. DOI: 10.1038/ki.2013.26.

Price PA, Urist MR, Otawara Y. Matrix Gla protein, a new gamma-carboxyglutamic acid-containing protein which is associated with the organic matrix of bone. Biochem Biophys Res Commun 1983; 117(3): 765–771.

Price PA, Faus SA, Williamson MK. Warfarin causes rapid calcification of the elastic lamellae in rat arteries and heart valves. Arterioscler Thromb Vasc Biol 1998; 18(9): 1400–1407.

Schurgers LJ, Spronk HM, Soute BA, Schiffers PM, DeMey JG, Vermeer C. Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin K in rats. Blood 2007; 109(7): 2823–2831. DOI 10.1182/blood-2006-07-035345.

Spronk HM, Soute BA, Schurgers LJ, Thijssen HH, De Mey JG, Vermeer C. Tissue-specific utilization of menaquinone-4 results in the prevention of arterial calcification in warfarin-treated rats. J Vasc Res 2003; 40: 531–537. DOI: 10.1159/000075344.

Schurgers LJ, Teunissen KJ, Knapen MH, Kwaijtaal M, van Diest R, Appels A, et al. Novel conformation-specific antibodies against matrix gamma-carboxyglutamic acid (Gla) protein: undercarboxylated matrix Gla protein as marker for vascular calcification. Arterioscler Thromb Vasc Biol 2005; 25(8): 1629–1633. DOI: 10.1161/01.ATV.0000173313.46222.43.

Schurgers LJ, Cranenburg EC, Vermeer C. Matrix Glaprotein: the calcification inhibitor in need of vitamin K. Thromb Haemost 2008; 100(4): 593–603. DOI:10.1160/TH08-02-0087.

Schurgers LJ, Spronk HM, Skepper JN, Hackeng TM, Shanahan CM, Vermeer C, et al. Post-translational modifications regulate matrix Gla protein function: importance for inhibition of vascular smooth muscle cell calcification. J Thromb Haemost 2007; 5(12): 2503 –2511. DOI: 10.1111/j.1538-7836.2007.02758.x.

Dalmeijer GW, van der Schouw YT, Magdeleyns EJ, Vermeer C, Verschuren WM, Boer JM, et al. Matrix Gla protein species and risk of cardiovascular events in type 2 diabetic patients. Diabetes Care 2013; 36(11):3766– 3771. DOI: 10.2337/dc13-0065.

van den Heuvel EG, van Schoor NM, Lips P, Magdeleyns EJ, Deeg DJ, Vermeer C, et al. Circulating uncarboxylated matrix Gla protein, a marker of vitamin K status, as a risk factor of cardiovascular disease. Maturitas 2014; 77(2): 137–141. DOI: 10.1016/j.maturitas.2013.10.008.

Wallin R, Cain D, Hutson SM, Sane DC, Loeser R. Modulation of the binding of matrix Gla protein (MGP) to bone morphogenetic protein-2 (BMP-2). Thromb Haemost 2000; 84(6): 1039–1044.

Boström K, Tsao D, Shen S, Wang Y, Demer LL. Matrix GLA protein modulates differentiation induced by bone morphogenetic protein-2 in C3H10T1/2 cells. J Biol Chem 2001; 276(17): 14044–14052.

Proudfoot D, Shanahan CM. Molecular mechanisms mediating vascular calcification: role of matrix Gla protein. Nephrology (Carlton) 2006; 11(5): 455–461. DOI:10.1111/j.1440-1797.2006.00660.x.

Viegas CS, Simes DC, Laizé V, Williamson MK, Price PA, Cancela ML. Gla-rich protein (GRP), a new vitamin K-dependent protein identified from sturgeon cartilage and highly conserved in vertebrates. J Biol Chem 2008; 283(52): 36655–36664. DOI: 10.1074/jbc.M802761200.

Eitzinger N, Surmann-Schmitt C, Bösl M, Schett G, Engelke K, Hess A, et al. Ucma is not necessary for normal development of the mouse skeleton. Bone 2012; 50(3): 670–680. DOI: 10.1016/j.bone.2011.11.017.

Neacsu CD, Grosch M, Tejada M, Winterpacht A, Paulsson M, Wagener R, et al. Ucmaa (Grp-2) is required for zebrafish skeletal development. Evidence for a functional role of its glutamate γ-carboxylation. Matrix Biol 2011; 30(7-8): 369–378. DOI:10.1016/j.matbio.2011.07.002.

Viegas CS, Cavaco S, Neves PL, Ferreira A, João A, Williamson MK, et al. Gla-rich protein is a novel vitamin K-dependent protein present in serum that accumulates at sites of pathological calcifications. Am J Pathol 2009; 175(6): 2288–2298. DOI: 10.2353/ajpath.2009.090474.

Viegas CS, Rafael MS, Enriquez JL, Teixeira A, Vitorino R, Luís IM, et al. Gla-rich protein acts as a calcification inhibitor in the human cardiovascular system. Arterioscler Thromb Vasc Biol 2015; 35(2): 399–408. DOI: 10.1161/ATVBAHA.114.304823.

Viegas CS, Simes DC. Gla-rich protein (GRP): A new player in the burden of vascular calcification. J Cardiovasc Dis Diagn 2016; 4: 245. DOI:10.4172/2329-9517.1000245.

Fernández-Fernández L, Bellido-Martín L, García de Frutos P. Growth arrest-specific gene 6 (GAS6). An outline of its role in haemostasis and inflammation. Thromb Haemost 2008; 100(4): 604–610. DOI: 10.1160/TH08-04-0253.

Lemke G. Biology of the TAM receptors. Cold Spring Harb Perspect Biol 2013; 5(11): a009076. DOI: 10.1101/cshperspect.a009076.

Qiu C, Zheng H, Tao H, Yu W, Jiang X, Li A, et al. Vitamin K2 inhibits rat vascular smooth muscle cell calcification by restoring the Gas6/Axl/Akt anti-apoptotic pathway. Mol Cell Biochem 2017; DOI: 10.1007/ s11010-017-3023-z.

Geleijnse JM, Vermeer C, Grobbee DE, Schurgers LJ, Knapen MH, van der Meer IM, et al. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study. J Nutr 2004; 134(11): 3100–3105.

Shea MK, Holden RM. Vitamin K status and vascular calcification: evidence from observational and clinical studies. Adv Nutr 2012; 3(2): 158–165. DOI: 10.3945/an.111.001644.

Shea MK, O’Donnell CJ, Hoffmann U, Dallal GE, Dawson-Hughes B, Ordovas JM, et al. Vitamin K supplementation and progression of coronary artery calcium in older men and women. Am J Clin Nutr 2009; 89(6): 1799–1807. DOI: 10.3945/ajcn.2008.27338.

Shea MK, Booth SL, Miller ME, Burke GL, Chen H, Cushman M, et al. Association between circulating vitamin K1 and coronary calcium progression in community-dwelling adults: the Multi-Ethnic Study of Atherosclerosis. Am J Clin Nutr 2013; 98(1): 197–208. DOI: 10.3945/ajcn.112.056101.

Dalmeijer GW, van der Schouw YT, Magdeleyns EJ, Vermeer C, Verschuren WM, Boer JM, et al. Circulating desphospho-uncarboxylated matrix γ-carboxyglutamate protein and the risk of coronary heart disease and stroke. J Thromb Haemost 2014; 12(7): 1028–1034. DOI: 10.1111/jth.12609.

Dalmeijer GW, van der Schouw YT, Magdeleyns EJ, Vermeer C, Elias SG, Velthuis BK, et al. Circulating species of matrix Gla protein and the risk of vascular calcification in healthy women. Int J Cardiol 2013; 168(6): 168–170. DOI: 10.1016/j.ijcard.2013.08.062.

van Popele NM, Mattace-Raso FU, Vliegenthart R, Grobbee DE, Asmar R, van der Kuip DA, et al. Aortic stiffness is associated with atherosclerosis of the coronary arteries in older adults: the Rotterdam Study. J Hypertens 2006; 24(12): 2371–2376. DOI: 10.1097/01.hjh.0000251896.62873.c4.

Pivin E, Ponte B, Pruijm M, Ackermann D, Guessous I, Ehret G, et al. Inactive Matrix Gla Protein Is Associated With Arterial Stiffness in an Adult Population-Based Study. Hypertension 2015; 66(1): 85–92. DOI: 10.1161/HYPERTENSIONAHA.115.05177.

Mayer O Jr, Seidlerova J, Wohlfahrt P, Filipovsky J, Vanek J, Cifkova R, et al. Desphospho-uncarboxylated matrix Gla protein is associated with increased aortic stiffness in a general population. J Hum Hypertens 2016; 30(7): 418–423. DOI: 10.1038/jhh.2015.55.

Sardana M, Vasim I, Varakantam S, Kewan U, Tariq A, Koppula MR, et al. Inactive matrix Gla-protein and arterial stiffness in type 2 diabetes mellitus. Am J Hypertension 2017; 30(2):196-201. DOI: 10.1093/ajh/hpw146.

Mayer O Jr, Seidlerova J, Bruthans J, Filipovsky J, Timoracka K, Vanek J, et al. Desphosphouncarboxylated matrix Gla-protein is associated with mortality risk in patients with chronic stable vascular disease. Atherosclerosis 2014; 235(1): 162–168. DOI: 10.1016/j.atherosclerosis.2014.04.027.

Holden RM, Morton AR, Garland JS, Pavlov A, Day AG, Booth SL. Vitamins K and D status in stages 3-5 chronic kidney disease. Clin J Am Soc Nephrol 2010; 5(4): 590–597. DOI: 10.2215/CJN.06420909.

Zhelyazkova-Savova M, Galunska B, Gerova D, Siderova M, Zorcheva R, Paskalev D. Undercarboxylated osteocalcin in postmenopausal patients on hemodialysis. Nephrology (St. Petersburg) 2011: 15(3): 35–39.

Keyzer CA, Vermeer C, Joosten MM, Knapen MH, Drummen NE, Navis G, et al. Vitamin K status and mortality after kidney transplantation: a cohort study. Am J Kidney Dis 2015; 65(3): 474–483. DOI: 10.1053/j.ajkd.2014.09.014.

Cranenburg EC, Brandenburg VM, Vermeer C, Stenger M, Mühlenbruch G, Mahnken AH, et al. Uncarboxylated matrix Gla protein (ucMGP) is associated with coronary artery calcification in haemodialysis patients. Thromb Haemost 2009; 101(2): 359–366.

Schlieper G, Westenfeld R, Krüger T, Cranenburg EC, Magdeleyns EJ, Brandenburg VM, et al. Circulating nonphosphorylated carboxylated matrix gla protein predicts survival in ESRD. J Am Soc Nephrol 2011; 22(2): 387–395. DOI: 10.1681/ASN.2010040339.

Westenfeld R, Krueger T, Schlieper G, Cranenburg EC, Magdeleyns EJ, Heidenreich S, et al. Effect of vitamin K2 supplementation on functional vitamin K deficiency in hemodialysis patients: a randomized trial. Am J Kidney Dis 2012; 59(2): 186–195. DOI: 10.1053/j.ajkd.2011.10.041.

Knapen MH, Braam LA, Drummen NE, Bekers O, Hoeks AP, Vermeer C. Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopausal women. A double-blind randomised clinical trial. Thromb Haemost 2015;113(5):1135–1144. DOI: 10.1160/TH14-08-0675.

Kurnatowska I, Grzelak P, Masajtis-Zagajewska A, Kaczmarska M, Stefańczyk L, Vermeer C, et al. Effect of vitamin K2 on progression of atherosclerosis and vascular calcification in nondialyzed patients with chronic kidney disease stages 3-5. Pol Arch Med Wewn. 2015; 125(9): 631–640.

Schurgers LJ, Aebert H, Vermeer C, Bültmann B, Janzen J. Oral anticoagulant treatment: friend or foe in cardiovascular disease? Blood 2004; 104(10): 3231–3232. DOI: 10.1182/blood-2004-04-1277.

Koos R, Mahnken AH, Mühlenbruch G, Brandenburg V, Pflueger B, Wildberger JE, et al. Relation of oral anticoagulation to cardiac valvular and coronary calcium assessed by multislice spiral computed tomography. Am J Cardiol 2005; 96(6): 747–749. DOI: 10.1016/j.amjcard.2005.05.014.

Weijs B, Blaauw Y, Rennenberg RJ, Schurgers LJ, Timmermans CC, Pison L, et al. Patients using vitamin K antagonists show increased levels of coronary calcification: an observational study in low-risk atrial fibrillation patients. Eur Heart J 2011; 32(20): 2555–2562. DOI: 10.1093/eurheartj/ehr226.

Andrews J, Psaltis PJ, Bayturan O, Shao M, Stegman B, Elshazly M, et al. Warfarin use is associated with progressive coronary arterial calcification: Insights from serial intravascular ultrasound. JACC Cardiovasc Imaging 2017; in press; DOI: 10.1016/j.jcmg.2017.04.010.

Rennenberg RJ, van Varik BJ, Schurgers LJ, Hamulyak K, Ten Cate H, Leiner T, et al. Chronic coumarin treatment is associated with increased extracoronary arterial calcification in humans. Blood 2010; 115(24): 5121–5123. DOI: 10.1182/blood-2010-01-264598.

Tantisattamo E, Han KH, O’Neill WC. Increased vascular calcification in patients receiving warfarin. Arterioscler Thromb Vasc Biol 2015; 35(1): 237–242. DOI: 10.1161/ATVBAHA.114.304392.

Han KH, O’Neill WC. Increased peripheral arterial calcification in patients receiving warfarin. J Am Heart Assoc 2016; 5(1). DOI: 10.1161/JAHA.115.002665.

Alvarez-Pérez A, Gutiérrez-González E, Sánchez-Aguilar D, Toribio J. Atypical calciphylaxis secondary to treatment with acenocoumarol. Actas Dermosifiliogr 2012; 103(1): 79–81. DOI: 10.1016/j.adengl.2011.01.006.

Nour SA, Nour HA, Mehta J, Roy T, Byrd R. Tracheobronchial calcification due to warfarin therapy. Am J Respir Crit Care Med 2014; 189(12): e73. DOI: 10.1164/rccm.201305-0975IM.

Holden RM, Sanfilippo AS, Hopman WM, Zimmerman D, Garland JS, Morton AR. Warfarin and aortic valve calcification in hemodialysis patients. J Nephrol 2007; 20(4): 417–422.

Delanaye P, Krzesinski JM, Warling X, Moonen M, Smelten N, Médart L, et al. Dephosphorylateduncarboxylated Matrix Gla protein concentration is predictive of vitamin K status and is correlated with vascular calcification in a cohort of hemodialysis patients. BMC Nephrol 2014;15:145. DOI: 10.1186/1471-2369-15-145.

Lutz J, Jurk K, Schinzel H. Direct oral anticoagulants in patients with chronic kidney disease: patient selection and special considerations. Int J Nephrol Renovasc Dis 2017; 10: 135–143. DOI: 10.2147/IJNRD.S105771.

McFarlane SI, Muniyappa R, Shin JJ, Bahtiyar G, Sowers JR. Osteoporosis and cardiovascular disease: brittle bones and boned arteries, is there a link? Endocrine 2004; 23(1): 1–10. DOI: 10.1385/ENDO:23:1:01.

London GM. Bone-vascular cross-talk. J Nephrol 2012; 25(5): 619–625. DOI: 10.5301/jn.5000187.

Flore R, Ponziani FR, Di Rienzo TA, Zocco MA, Flex A, Gerardino L, et al. Something more to say about calcium homeostasis: the role of vitamin K2 in vascular calcification and osteoporosis. Eur Rev Med Pharmacol Sci 2013; 17(18): 2433–2440.

Persy V, D’Haese P. Vascular calcification and bone disease: the calcification paradox. Trends Mol Med 2009; 15(9): 405–416. DOI: 10.1016/j.molmed.2009.07.001.

Bolland MJ, Barber PA, Doughty RN, Mason B, Horne A, Ames R, et al. Vascular events in healthy older women receiving calcium supplementation: randomised controlled trial. BMJ 2008; 336(7638): 262–266. DOI: 10.1136/bmj.39440.525752.

Caluwe R, Pyfferoen L, De Boeck K, De Vriese AS. The effects of vitamin K supplementation and vitamin K antagonists on progression of vascular calcification: ongoing randomized controlled trials. Clin Kidney J 2016; 9(2): 273–279. DOI: 10.1093/ckj/sfv146.

Brandenburg VM, Schurgers LJ, Kaesler N, Püsche K, van Gorp RH, Leftheriotis G, et al. Prevention of vasculopathy by vitamin K supplementation: can we turn fiction into fact? Atherosclerosis 2015; 240(1): 10–16. DOI: 10.1016/j.atherosclerosis.2015.02.040.




DOI: http://dx.doi.org/10.14748/bmr.v28.4453

Refbacks

Article Tools
Email this article (Login required)
About The Authors

Maria Zhelyazkova-Savova
Medical University, Varna
Bulgaria

Department of Preclinical and Clinical Pharmacology and Therapeutics

Silvia Gancheva
Medical University, Varna
Bulgaria

Department of Preclinical and Clinical Pharmacology and Therapeutics

Bistra Galunska
Medical University, Varna
Bulgaria

Department of Biochemistry, Molecular Medicine and Nutrigenomics

Daniela Gerova
Medical University, Varna
Bulgaria

Department of Clinical Laboratory

Font Size


|