Scientific Online Resource System

Biomedical Reviews

Nerve growth factor in brain diseases

Stefania Ciafrè, Valentina Carito, Giampiero Ferraguti, Antonio Greco, Massimo Ralli, Paola Tirassa, George N. Chaldakov, Marisa Patrizia Messina, Maria Luisa Attilia, Rosaria Ceccarelli, Luigi Tarani, Mauroi Ceccanti, Marco Fiore

Abstract

The nerve growth factor (NGF) belongs to a family of proteins termed neurotrophins, consisting of NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), NT-4/5 and NT-6. Today, NGF is well recognized to mediate a large number of trophobiological actions resulting in neurotrophic, immunotrophic and/or metabotrophic effects. The pathobiology of neurodegenerative diseases, including Alzheimer disease, psychiatric disorders (e.g. depression and schizophrenia) and brain parasitic infections have in common the effect of altering the brain levels of neurotrophins and in particular NGF. The involvement of NGF and its TrkA receptor in these pathologies and the recent promising results of NGF therapies are presented and discussed.

Keywords

NGF, Alzheimer`s disease, depression, schizophrenia, parasite, alcohol, autism

Full Text


References

Levi-Montalcini R. The nerve growth factor 35 years later. Science 1987; 237:1154-1162. DOI:10.1126/science. 3306916

Yanev, Stanislav, Aloe L, Fiore M, Chaldakov GN. Neurotrophic and metabotrophic potential of nerve growth factor and brain-derived neurotrophic factor: Linking cardiometabolic and neuropsychiatric diseases. World J Pharmacol 2013; 2:92. DOI:10.5497/wjp.v2.i4.92

Greco A, Ralli M, De Virgilio A, Inghilleri M, Fusconi M, de Vincentiis M. Letter to the Editor: Autoimmune pathogenic mechanisms in Huntington`s disease. Autoimmun Rev 2018; 17:942-943. DOI:10.1016/j.autrev.2018.04.003

Hillis J, O`Dwyer M, Gorman AM. Neurotrophins and B-cell malignancies. Cell Mol Life Sci 2016; 73:41-56. DOI:10.1007/s00018-015-2046-4

Skaper SD. Nerve growth factor: a neuroimmune crosstalk mediator for all seasons. Immunology 2017; 151:1-15. DOI:10.1111/imm.12717

Pepeu G, Grazia Giovannini M. The fate of the brain cholinergic neurons in neurodegenerative diseases. Brain Res 2017; 1670:173-184. DOI:10.1016/j.brainres. 2017.06.023

Aygun N. Biological and genetic features of neuroblastoma and their clinical importance. Curr Pediatr Rev 2018; 14:73-90. DOI:10.2174/1573396314666180129101627

Fields J, Dumaop W, Langford TD, Rockenstein E, Masliah E. Role of neurotrophic factor alterations in the neurodegenerative process in HIV associated neurocognitive disorders. J Neuroimmune Pharmacol 2014; 9:102-116. DOI:10.1007/s11481-013-9520-2

Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 2013; 138:155-175. DOI:10.1016/j.pharmthera.2013.01.004

Iulita MF, Caraci F, Cuello AC. A link between nerve growth factor metabolic deregulation and amyloid-betadriven inflammation in Down syndrome. CNS Neurol Disord Drug Targets 2016; 15:434-447.

Greco A, Ralli M, Inghilleri M, De Virgilio A, Gallo A, de Vincentiis M. Letter to the Editor: Autoimmune pathogenic mechanisms in amyotrophic lateral sclerosis. Autoimmun Rev 2018; 17:530-531. DOI:10.1016/j.autrev.2018.04.003

Kaplan DR, Martin-Zanca D, Parada LF. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature 1991; 350:158-160. DOI:10.1038/350158a0

Donovan MJ, Miranda RC, Kraemer R, McCaffrey TA, Tessarollo L, Mahadeo D, et al. Neurotrophin and neurotrophin receptors in vascular smooth muscle cells. Regulation of expression in response to injury. Am J Pathol 1995; 147:309-324.

Fiore M, Chaldakov GN, Aloe L. Nerve growth factor as a signaling molecule for nerve cells and also for the neuroendocrine-immune systems. Rev Neurosci 2009; 20:133-145. DOI:10.1515/REVNEURO.2009.20.2.133

Carito V, Venditti A, Bianco A, Ceccanti M, Serrilli AM, Chaldakov G, et al. Effects of olive leaf polyphenols on male mouse brain NGF, BDNF and their receptors TrkA, TrkB and p75. Nat Prod Res 2014; 28:1970-1984. DOI:10.1080/14786419.2014.918977

De Nicoló S, Tarani L, Ceccanti M, Maldini M, Natella F, Vania A, et al. Effects of olive polyphenols administration on nerve growth factor and brain-derived neurotrophic factor in the mouse brain. Nutrition 2013; 29:681-687. DOI:10.1016/j.nut.2012.11.007

van der Laan BF, Freeman JL, Asa SL. Expression of growth factors and growth factor receptors in normal and tumorous human thyroid tissues. Thyroid 1995; 5:67-73.

Freeman RS, Burch RL, Crowder RJ, Lomb DJ, Schoell MC, Straub JA, et al. NGF deprivation-induced gene expression: after ten years, where do we stand? Prog Brain Res 2004; 146:111-126. DOI:10.1016/S0079-6123(03)46008-1

Chaldakov GN, Beltowsky J, Ghenev PI, Fiore M, Panayotov P, Rančič G, et al. Adipoparacrinology - vascular periadventitial adipose tissue (tunica adiposa) as an example. Cell Biol Int 2012; 36:327-330.

DOI:10.1029/2011JD017014

Chaldakov GN, Fiore M, Tonchev AB, Dimitrov D, Pancheva R, Rancic G, et al. Homo obesus: A metabotrophin-deficient species. Pharmacology and nutrition insight. Curr Pharm Des 2007; 13:2176-2179. DOI:10.2174/138161207781039616

Chaldakov GN, Fiore M, Ghenev PI, Stankulov IS, Aloe L. Atherosclerotic lesions: Possible interactive involvement of intima, adventitia and associated adipose tissue. Int Med J 2000; 7:43-49.

Tore F, Tonchev A, Fiore M, Tuncel N, Atanassova P, Aloe L, et al. From adipose tissue protein secretion to adipopharmacology of disease. Immunol Endocr Metab Agents Med Chem 2007; 7:149-155.

DOI:10.2174/187152207780363712

Chaldakov GN, Fiore M, Tonchev AB, Aloe L. Neuroadipology: A novel component of neuroendocrinology. Cell Biol Int 2010; 34:1051-1053. DOI:10.1042/CBI20100509

Levi-Montalcini R. The nerve growth factor: 35 years later (Nobel Lecture). Angew Chemie Int Ed English 1987; 26:707-716. DOI:10.1002/anie.198707073

Chao M V. Trophic factors: An evolutionary cul-de-sac or door into higher neuronal function? J Neurosci Res 2000; 59:353-355.

Sanes DH, Reh TA, Harris WA. Development of the nervous system. Elsevier 2005.

Yano H, Chao M V. Neurotrophin receptor structure and interactions. Pharm Acta Helv 2000; 74:253-260. DOI:10.1016/S0031-6865(99)00036-9

Niewiadomska G, Mietelska-Porowska A, Mazurkiewicz M. The cholinergic system, nerve growth factor and the cytoskeleton. Behav Brain Res 2011); 221:515-526. DOI:10.1016/j.bbr.2010.02.024

Xu C-J, Wang J-L, Jin W-L. The Emerging Therapeutic Role of NGF in Alzheimer`s Disease. Neurochem Res 2016; 41:1211-1218. DOI:10.1007/s11064-016-1829-9

Canu N, Amadoro G, Triaca V, Latina V, Sposato V, Corsetti V, et al. The Intersection of NGF/TrkA Signaling and Amyloid Precursor Protein Processing in Alzheimer`s Disease Neuropathology. Int J Mol Sci 2017; 18: DOI:10.3390/ijms18061319

Angelucci F, Gelfo F, Fiore M, Croce N, Mathé AA, Bernardini S, et al. The effect of neuropeptide Y on cell survival and neurotrophin expression in in-vitro models of Alzheimer`s disease. Can J Physiol Pharmacol 2014; 92:621-630. DOI:10.1139/cjpp-2014-0099

Scott SA, Mufson EJ, Weingartner JA, Skau KA, Crutcher KA. Nerve growth factor in Alzheimer`s disease: increased levels throughout the brain coupled with declines in nucleus basalis. J Neurosci 1995; 15:6213-21.

Arendt T. Impairment in memory function and neurodegenerative

changes in the cholinergic basal forebrain system induced by chronic intake of ethanol. Cell Anim Model Aging Dement Res 1994; 44:173-187. DOI:10.1007/978-3-7091-9350-1_13

Arendt T, Bruckner MK, Bigl V, Marcova L. Dendritic reorganisation in the basal forebrain under degenerative conditions and its defects in Alzheimer`s disease. III. The basal forebrain compared with other subcortical areas. J Comp Neurol 1995; 351:223-246. DOI:10.1002/

cne.903510204

Arendt T, Marcova L, Bigl V, Bruckner MK. Dendritic reorganisation in the basal forebrain under degenerative conditions and its defects in Alzheimer`s disease. I. Dendritic organisation of the normal human basal forebrain. J Comp Neurol 1995; 351:169-188. DOI:10.1002/

cne.903510202

Arendt T, Bruckner MK, Bigl V, Marcova L. Dendritic reorganisation in the basal forebrain under degenerative conditions and its defects in Alzheimer`s disease. II. Ageing, Korsakoff`s disease, Parkinson`s disease, and Alzheimer`s disease. J Comp Neurol 1995; 351:189-222.

DOI:10.1002/cne.903510203

Skaper SD. Neurotrophic factors: An overview. Methods Mol Biol 2018; 1727:1-17. DOI:10.1007/978-1-4939-7571-6_1

Budni J, Bellettini-Santos T, Mina F, Garcez ML, Zugno AI. The involvement of BDNF, NGF and GDNF in aging and Alzheimer`s disease. Aging Dis 2015; 6:331-341. DOI:10.14336/AD.2015.0825

Huang EJ, Reichardt LF. Trk receptors: Roles in neuronal signal transduction. Annu Rev Biochem 2003; 72:609-642. DOI:10.1146/annurev.biochem.72.121801.161629

Guerios SD, Wang Z-Y, Boldon K, Bushman W, Bjorling DE. Blockade of NGF and trk receptors inhibits increased peripheral mechanical sensitivity accompanying cystitis in rats. AJP Regul Integr Comp Physiol 2008; 295:R111-R122. DOI:10.1152/ajpregu.00728.2007

Chao M V., Hempstead BL. p75 and Trk: A tworeceptor system. Trends Neurosci 1995; 18:321-326. DOI:10.1016/0166-2236(95)93922-K

Triaca V. Homage to Rita Levi-Montalcini. Molecular mechanisms of Alzheimer`s disease: NGF modulation of APP processing. Adipobiology 2013; 5:7-18. DOI:10.14748/adipo.v5.292

Triaca V, Sposato V, Bolasco G, Ciotti MT, Pelicci P, Bruni AC, et al. NGF controls APP cleavage by downregulating APP phosphorylation at Thr668: relevance for Alzheimer`s disease. Aging Cell 2016; 15:661-672. DOI:10.1111/acel.12473

Mufson EJ, He B, Nadeem M, Perez SE, Counts SE, Leurgans S, et al. Hippocampal proNGF signaling pathways and beta-amyloid levels in mild cognitive impairment and Alzheimer disease. J Neuropathol

Exp Neurol 2012; 71:1018-1029. DOI:10.1097/

NEN.0b013e318272caab

Calissano P, Matrone C, Amadoro G. Nerve growth factor as a paradigm of neurotrophins related to Alzheimer`s disease. Dev Neurobiol 2010; 70:372-383. DOI:10.1002/dneu.20759

Ruberti F, Capsoni S, Comparini A, Di Daniel E, Franzot J, Gonfloni S, et al. Phenotypic knockout of nerve growth factor in adult transgenic mice reveals severe deficits in basal forebrain cholinergic neurons, cell death in the spleen, and skeletal muscle dystrophy. J Neurosci 2000;

:2589-2601.

Terry AVJ, Kutiyanawalla A, Pillai A. Age-dependent alterations in nerve growth factor (NGF)-related proteins, sortilin, and learning and memory in rats. Physiol Behav 2011; 102:149-157. DOI:10.1016/j.

physbeh.2010.11.005

Yegla B, Parikh V. Effects of sustained proNGF blockade on attentional capacities in aged rats with compromised cholinergic system. Neuroscience 2014; 261:118-132.

DOI:10.1016/j.neuroscience.2013.12.042

Parikh V, Howe WM, Welchko RM, Naughton SX, D`Amore DE, Han DH, et al. Diminished trkA receptor signaling reveals cholinergic-attentional vulnerability of aging. Eur J Neurosci 2013; 37:278-293. DOI:10.1111/ ejn.12090

Counts SE, Mufson EJ. The role of nerve growth factor receptors in cholinergic basal forebrain degeneration in prodromal Alzheimer disease. J Neuropathol Exp Neurol 2005; 64:263-272.

Matrone C, Di Luzio A, Meli G, D`Aguanno S, Severini C, Ciotti MT, et al. Activation of the amyloidogenic route by NGF deprivation induces apoptotic death in PC12 cells. J Alzheimers Dis 2008; 13:81-96.

Latina V, Caioli S, Zona C, Ciotti MT, Amadoro G, Calissano P. Impaired NGF/TrkA signaling causes early AD-linked presynaptic dysfunction in cholinergic primary neurons. Front Cell Neurosci 2017; 11:68. DOI:10.3389/ fncel.2017.00068

O`Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer`s disease. Annu Rev Neurosci 2011; 34:185-204. DOI:10.1146/annurev-neuro-061010-113613

Tamayev R, Zhou D, D`Adamio L. The interactome of the amyloid beta precursor protein family members is shaped by phosphorylation of their intracellular domains. Mol Neurodegener (2009) 4:28. DOI:10.1186/1750-1326-4- 28

Lee M-S, Kao S-C, Lemere CA, Xia W, Tseng H-C, Zhou Y, et al. APP processing is regulated by cytoplasmic phosphorylation. J Cell Biol 2003; 163:83-95. DOI:10.1083/ jcb.200301115

Chang K-A, Kim H-S, Ha T-Y, Ha J-W, Shin KY, Jeong YH, et al. Phosphorylation of amyloid precursor protein (APP) at Thr668 regulates the nuclear translocation of the APP intracellular domain and induces neurodegeneration. Mol Cell Biol 2006; 26:4327-4338. DOI:10.1128/ MCB.02393-05

Bloom GS. Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 2014; 71:505-508. DOI:10.1001/jamaneurol.2013.5847

Ribe EM, Perez M, Puig B, Gich I, Lim F, Cuadrado M, et al. Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/ tau transgenic mice. Neurobiol Dis 2005; 20:814-822. DOI:10.1016/j.nbd.2005.05.027

Amadoro G, Corsetti V, Ciotti MT, Florenzano F, Capsoni S, Amato G, et al. Endogenous Abeta causes cell death via early tau hyperphosphorylation. Neurobiol Aging 2011; 32:969-990. DOI:10.1016/j.neurobiolaging.2009.06.005

Carter C. Alzheimer`s disease: APP, gamma secretase, APOE, CLU, CR1, PICALM, ABCA7, BIN1, CD2AP, CD33, EPHA1, and MS4A2, and their relationships with herpes simplex, C. Pneumoniae, other suspect pathogens, and the immune system. Int J Alzheimers Dis 2011; 2011:501862. DOI:10.4061/2011/501862

Corsetti V, Amadoro G, Gentile A, Capsoni S, Ciotti MT, Cencioni MT, et al. Identification of a caspase-derived N-terminal tau fragment in cellular and animal Alzheimer`s disease models. Mol Cell Neurosci 2008; 38:381-392. DOI:10.1016/j.mcn.2008.03.011

Galvez-Contreras AY, Campos-Ordonez T, Lopez-Virgen V, Gomez-Plascencia J, Ramos-Zuniga R, et al. Growth factors as clinical biomarkers of prognosis and diagnosis in psychiatric disorders. Cytokine Growth Factor Rev 2016; 32:85-96. DOI:10.1016/j.cytogfr.2016.08.004

Dell`Omo G, Fiore M, Alleva E. Strain differences in mouse response to odours of predators. Behav Processes 1994; 32:105-115. DOI:10.1016/0376-6357(94)90069-8

Weinstock M. Prenatal stressors in rodents: Effects on behavior. Neurobiol Stress 2017; 6:3-13. DOI:10.1016/j. ynstr.2016.08.004

Weinstock M. Alterations induced by gestational stress in brain morphology and behaviour of the offspring. Prog Neurobiol 2001; 65:427-451. DOI:10.1016/S0301- 0082(01)00018-1

Maccari S, Darnaudery M, Morley-Fletcher S, Zuena AR, Cinque C, Van Reeth O. Prenatal stress and long-term consequences: Implications of glucocorticoid hormones. Neurosci Biobehav Rev 2003; 27:119-127. DOI:10.1016/ S0149-7634(03)00014-9

Pike IL. Maternal stress and fetal responses: evolutionary perspectives on preterm delivery. Am J Hum Biol 2005; 17:55-65. DOI:10.1002/ajhb.20093

Oyola MG, Handa RJ. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity. Stress 2017; 20:476-494. DOI:10.1080/10253890.2017.1369523

Gaffey AE, Bergeman CS, Clark LA, Wirth MM. Aging and the HPA axis: Stress and resilience in older adults. Neurosci Biobehav Rev 2016; 68:928-945. DOI:10.1016/j.neubiorev.2016.05.036

Juruena MF. Early-life stress and HPA axis trigger recurrent adulthood depression. Epilepsy Behav 2014; 38:148-159. DOI:10.1016/j.yebeh.2013.10.020

Guest MA, Its AR, Lin CS. Isomonodromy aspects of the ttequations of cecotti and vafa I. Stokes Data. Int Math Res Not 2015; 2015:11745-11784. DOI:10.1093/imrn/ rnu250

Hua JY, Smith SJ. Neural activity and the dynamics of central nervous system development. Nat Neurosci 2004; 7:327-332. DOI:10.1038/nn1218

Branchi I, D`Andrea I, Sietzema J, Fiore M, Di Fausto V, Aloe L, et al. Early social enrichment augments adult hippocampal BDNF levels and survival of BRDU-positive cells while increasing anxiety- and `depression`-like behavior. J Neurosci Res 2006; DOI:10.1002/jnr.20789

Branchi I, D`Andrea I, Fiore M, Di Fausto V, Aloe L, Alleva E. Early social enrichment shapes social behavior and nerve growth factor and brain-derived neurotrophic factor levels in the adult mouse brain. Biol Psychiatry 2006; DOI:10.1016/j.biopsych.2006.01.005

Fiore M, Moroni R, Aloe L. Removal of the submaxillary salivary glands and infection with the trematode Schistosoma mansoni alters exploratory behavior and pain thresholds in female mice. Physiol Behav 1997; 62:399-406. DOI:10.1016/S0031-9384(97)00036-X

Aloe L, Fiore M. Submandibular glands, nerve growth factor and neuroinflammatory responses in rodents. Biomed Rev 1998; 9:93-99. DOI:10.14748/bmr.v9.139

Fiore M, Amendola T, Triaca V, Alleva E, Aloe L. Fighting in the aged male mouse increases the expression of TrkA and TrkB in the subventricular zone and in the hippocampus. Behav Brain Res 2005; DOI:10.1016/j. bbr.2004.08.024

Maestripieri D, De Simone R, Aloe L, Alleva E. Social status and nerve growth factor serum levels after agonistic encounters in mice. Physiol Behav 1990; 47:161-164. DOI:10.1016/0031-9384(90)90056-A

Bigi S, Maestripieri D, Aloe L, Alleva E. NGF decreases isolation-induced aggressive behavior, while increasing adrenal volume, in adult male mice. Physiol Behav 1992; 51:337-343. DOI:10.1016/0031-9384(92)90150-Z

Fiore M, Amendola T, Triaca V, Tirassa P, Alleva E, Aloe L. Agonistic encounters in aged male mouse potentiate the expression of endogenous brain NGF and BDNF: Possible implication for brain progenitor cells` activation. Eur J Neurosci 2003; 17:1455-1464. DOI: 10.1046/j.1460- 9568.2003.02573.x

Aloe L, Alleva E, Fiore M. Stress and nerve growth factor: Findings in animal models and humans. Pharmacol Biochem Behav 2002; 73:159-166. DOI: 10.1016/S0091- 3057(02)00757-8

Spillantini MG, Aloe L, Alleva E, De Simone R, Goedert M, Levi-Montalcini R. Nerve Growth-Factor Messenger- RNA and Protein Increase in Hypothalamus in A Mouse Model of Aggression. Proc Natl Acad Sci USA 1989; 86:8555-8559. DOI:10.1073/pnas.86.21.8555

Bersani G, Iannitelli A, Fiore M, Angelucci F, Aloe L. Data and hypotheses on the role of nerve growth factor and other neurotrophins in psychiatric disorders. Med Hypotheses 2000; 55:199-207. DOI:10.1054/ mehy.1999.1044

Stampachiacchiere B, Marinova T, Velikova K, Philipov S, Stankulov IS, Chaldakov GN, et al. Altered levels of nerve growth factor in the thymus of subjects with myasthenia gravis. J Neuroimmunol 2004; 146:199-202. DOI:10.1016/j.jneuroim.2003.10.048

Fiore M, Angelucci F, Aloe L, Iannitelli A, Korf J. Nerve growth factor and brain-derived neurotrophic factor in schizophrenia and depression: Findings in humans, and animal models. Curr Neuropharmacol 2003; 1:109-123. DOI:10.2174/1570159033477206

Aloe L, Iannitelli A, Bersani G, Alleva E, Angelucci F, Maselli P, et al. Haloperidol administration in humans lowers plasma nerve growth factor level: Evidence that sedation induces opposite effects to arousal. Neuropsychobiology 1997; 36:65-68. DOI:10.1159/000119364

Parikh V, Khan MM, Terry A, Mahadik SP. Differential effects of typical and atypical antipsychotics on nerve growth factor and choline acetyltransferase expression in the cortex and nucleus basalis of rats. J Psychiatr Res 2004; 38:521-529. DOI:10.1016/j.jpsychires.2004.03.008

Ciafrè S, Fiore M, Ceccanti M, Messina MP, Tirassa P, Carito V. Role of neuropeptide tyrosine (NPY) in ethanol addiction. Biomed Rev 2016; 27:27-39. DOI:10.14748/ bmr.v27.2110

Raedler TJ, Knable MB, Weinberger DR. Schizophrenia as a developmental disorder of the cerebral cortex. Curr Opin Neurobiol 1998; 8:157-161. DOI:10.1016/S0959- 4388(98)80019-6

Fiore M, Dell`Omo G, Alleva E, Lipp HP. A comparison of behavioural effects of prenatally administered oxazepam in mice exposed to open-fields in the laboratory and the real world. Psychopharmacology (Berl) 1995; 122:72-77. DOI:10.1007/BF02246444

Alleva E, Francia N. Psychiatric vulnerability: suggestions from animal models and role of neurotrophins. Neurosci Biobehav Rev 2009; 33:525-536. DOI:10.1016/j. neubiorev.2008.09.004

Matsuzaki S, Tohyama M. Molecular mechanism of schizophrenia with reference to disrupted-in-schizophrenia 1 (DISC1). Neurochem Int 2007; 51:165-172. DOI:10.1016/j.neuint.2007.06.018

Mackie S, Millar JK, Porteous DJ. Role of DISC1 in neural development and schizophrenia. Curr Opin Neurobiol 2007; 17:95-102. DOI:10.1016/j.conb.2007.01.007

Millar JK, James K, Brandon NJ, Thomson PA. DISC1 and DISC2: Discovering and dissecting molecular mechanisms underlying psychiatric illness. Ann Med 2004; 36:367-378. DOI:10.1080/07853890410033603

Tomoda T, Hikida T, Sakurai T. Role of DISC1 in neuronal trafficking and its tmplication in neuropsychiatric manifestation and neurotherapeutics. Neurotherapeutics 2017; 14:623-629. DOI:10.1007/s13311-017-0556-5

Dahoun T, Trossbach S V, Brandon NJ, Korth C, Howes OD. The impact of Disrupted-in-Schizophrenia 1 (DISC1) on the dopaminergic system: a systematic review. Transl Psychiatry 2017; 7:e1015. DOI:10.1038/ tp.2016.282

Devine MJ, Norkett R, Kittler JT. DISC1 is a coordinator of intracellular trafficking to shape neuronal development and connectivity. J Physiol 2016; 594:5459-5469. DOI:10.1113/JP272187

Iwabuchi SJ, Peng D, Fang Y, Jiang K, Liddle EB, Liddle PF, et al. Alterations in effective connectivity anchored on the insula in major depressive disorder. Eur Neuropsychopharmacol 2014; 24:1784-1792. DOI:10.1016/j. euroneuro.2014.08.005

Tanti A, Belzung C. Neurogenesis along the septo-temporal axis of the hippocampus: are depression and the action of antidepressants region-specific? Neuroscience 2013; 252:234-252. DOI:10.1016/j.neuroscience.2013.08.017

Lang UE, Borgwardt S. Molecular mechanisms of depression: perspectives on new treatment strategies. Cell Physiol Biochem 2013; 31:761-777. DOI:10.1159/000350094

Wiener CD, de Mello Ferreira S, Pedrotti Moreira F, Bittencourt G, de Oliveira JF, Lopez Molina M, et al. Serum levels of nerve growth factor (NGF) in patients with major depression disorder and suicide risk. J Affect Disord 2015; 184:245-248. DOI:10.1016/j.jad.2015.05.067

Banerjee R, Ghosh AK, Ghosh B, Bhattacharyya S, Mondal AC. Decreased mRNA and protein expression of BDNF, NGF, and their receptors in the hippocampus from suicide: An analysis in human postmortem brain. Clin Med Insights Pathol 2013; 6:1-11. DOI:10.4137/ CMPath.S12530

Mandolesi G, Bullitta S, Fresegna D, Gentile A, De Vito F, Dolcetti E, et al. Interferon-gamma causes mood abnormalities by altering cannabinoid CB1 receptor function in the mouse striatum. Neurobiol Dis 2017; 108:45-53. DOI:10.1016/j.nbd.2017.07.019

Campos AC, Vaz GN, Saito VM, Teixeira AL. Further evidence for the role of interferon-gamma on anxiety- and depressive-like behaviors: involvement of hippocampal neurogenesis and NGF production. Neurosci Lett 2014; 578:100-105. DOI:10.1016/j.neulet.2014.06.039

McGeary JE, Gurel V, Knopik VS, Spaulding J, McMichael J. Effects of nerve growth factor (NGF), fluoxetine, and amitriptyline on gene expression profiles in rat brain. Neuropeptides 2011; 45:317-322. DOI:10.1016/j. npep.2011.06.002

Taurines R, Schwenck C, Westerwald E, Sachse M, Siniatchkin M, Freitag C. ADHD and autism: differential diagnosis or overlapping traits? A selective review. Atten Defic Hyperact Disord 2012; 4:115-139. DOI:10.1007/ s12402-012-0086-2

Khanzada NS, Butler MG, Manzardo AM. Gene analytics pathway: Analysis and genetic overlap among Autism Spectrum Disorder, Bipolar Disorder and Schizophrenia. Int J Mol Sci 2017; 18: DOI:10.3390/ijms18030527

Stamova BS, Tian Y, Nordahl CW, Shen MD, Rogers S, Amaral DG, et al. Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders. Mol Autism 2013; 4:30. DOI:10.1186/2040- 2392-4-30

Lu AT-H, Yoon J, Geschwind DH, Cantor RM. QTL replication and targeted association highlight the nerve growth factor gene for nonverbal communication deficits in autism spectrum disorders. Mol Psychiatry 2013; 18:226-235. DOI:10.1038/mp.2011.155

Ceccanti M, Inghilleri M, Attilia ML, Raccah R, Fiore M, Zangen A, et al. Deep TMS on alcoholics: effects on cortisolemia and dopamine pathway modulation. A pilot study. Can J Physiol Pharmacol 2015; 93:283-290. DOI:10.1139/cjpp-2014-0188

Ciafrè S, Carito V, Tirassa P, Ferraguti G, Attilia ML, Ciolli P, et al. Ethanol consumption and innate neuroimmunity. Biomed Rev 2017; 28:49-61. DOI:10.14748/bmr. v28.4451

Ciafrè S, Carito V, Ferraguti G, Greco A, Chaldakov GN, Fiore M, Ceccanti M. How alcohol drinking affects our genes: an epigenetic point of view. Biochem Cell Biol 2018; bcb-2018-0248. DOI:10.1139/bcb- 2018-0248

Ledda R, Battagliese G, Attilia F, Rotondo C, Pisciotta F, Gencarelli S, et al. Drop-out, relapse and abstinence in a cohort of alcoholic people under detoxification. Physiol Behav 2019; 198:67-75. DOI:10.1016/j.physbeh.2018.10.009

Ceccanti M, Iannitelli A, Fiore M. Italian Guidelines for the treatment of alcohol dependence. Riv Psichiatr 2018; 53:105-106. DOI:10.1708/2925.29410

Ceccanti M, Coriale G, Hamilton DA, Carito V, Coccurello R, Scalese B, et al. Virtual Morris task responses in individuals in an abstinence phase from alcohol. Can J Physiol Pharmacol 2018; 96:128-136. DOI:10.1139/ cjpp-2017-0013

Ceccanti M, Hamilton D, Coriale G, Carito V, Aloe L, Chaldakov G, et al. Spatial learning in men un-dergoing alcohol detoxification. Physiol Behav 2015; 149:324-330. DOI:10.1016/j.physbeh.2015.06.034

Fein G, Torres J, Price LJ, Di Sclafani V. Cognitive performance in long-term abstinent alcoholic individuals. Alcohol Clin Exp Res 2006; 30:1538-1544. DOI:10.1111/j.1530-0277.2006.00185.x

Bernardin F, Maheut-Bosser A, Paille F. Cognitive impairments in alcohol-dependent subjects. Front Psychiatry 2014; 5:78. DOI:10.3389/fpsyt.2014.00078

Green CR, Mihic AM, Nikkel SM, Stade BC, Rasmussen C, Munoz DP, et al. Executive function deficits in children with fetal alcohol spectrum disorders (FASD) measured using the Cambridge Neuropsychological Tests Automated Battery (CANTAB). J Child Psychol Psychiatry Allied Discip 2009; 50:688-697. DOI:10.1111/j.1469-7610.2008.01990.x

Ferraguti G, Ciolli P, Carito V, Battagliese G, Mancinelli R, Ciafrè S, et al. Ethylglucuronide in the urine as a marker of alcohol consumption during pregnancy: Comparison with four alcohol screening questionnaires. Toxicol Lett 2017; 275:49-56. DOI:10.1016/j. toxlet.2017.04.016

Sakata-Haga H, Fukui Y. Effects of ethanol on the development of circadian time keeping system. Nihon Arukoru Yakubutsu Igakkai Zasshi 2007; 42:67-75.

del Campo M, Jones KL. A review of the physical features of the fetal alcohol spectrum disorders. Eur J Med Genet 2017; 60:55-64. DOI:10.1016/j. ejmg.2016.10.004

Kodituwakku P, Coriale G, Fiorentino D, Aragón AS, Kalberg WO, Buckley D, et al. Neurobehavioral characteristics of children with fetal alcohol spectrum disorders in communities from Italy: Preliminary results. Alcohol Clin Exp Res 2006;30:1551-1561. DOI:10.1111/j.1530- 0277.2006.00187.x

Aloe L, Tuveri MA, Guerra G, Pinna L, Tirassa P, Micera A, et al. Changes in human plasma nerve growth factor level after chronic alcohol consumption and withdrawal. Alcohol Exp Res 1996; 20:462-465. DOI:10.1111/j.1530-0277.1996.tb01076.x

Carito V, Ceccanti M, Cestari V, Natella F, Bello C, Coccurello R, et al. Olive polyphenol effects in a mouse model of chronic ethanol addiction. Nutrition 2017; 33:65-69. DOI:10.1016/j.nut.2016.08.014

Carito V, Ceccanti M, Tarani L, Ferraguti G, N. Chaldakov G, Fiore M. Neurotrophins` modulation by olive polyphenols. Curr Med Chem 2016; 23:3189-3197. DOI: 10.2174/0929867323666160627104022

Carito V, Ceccanti M, Chaldakov G, Tarani L, De Nicolò S, Ciafrè S, et al. Polyphenols, nerve growth factor, brain-derived neurotrophic factor, and the brain. In: Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease: Prevention and Therapy 2016; 65-71. DOI:10.1016/B978-0-12- 411462-3.00007-2

De Nicolò S, Carito V, Fiore M, Laviola G. Aberrant behavioral and neurobiologic profiles in rodents exposed to ethanol or red wine early in development. Curr Dev Disord Reports 2014; 1:173-180. DOI:10.1007/s40474- 014-0023-5

Fiore M, Mancinelli R, Aloe L, Laviola G, Sornelli F, Vitali M, et al. Hepatocyte growth factor, vascular endothelial growth factor, glial cell-derived neurotrophic factor and nerve growth factor are differentially affected by early chronic ethanol or red wine intake. Toxicol Lett 2009; 188:208-213. DOI:10.1016/j.toxlet.2009.04.013

Ceccanti M, Mancinelli R, Tirassa P, Laviola G, Rossi S, Romeo M, et al. Early exposure to ethanol or red wine and long-lasting effects in aged mice. A study on nerve growth factor, brain-derived neurotrophic factor, hepatocyte growth factor, and vascular endothelial growth factor. Neurobiol Aging 2012; 33:359-367. DOI:10.1016/j.neurobiolaging.2010.03.005

Fiore M, Laviola G, Aloe L, di Fausto V, Mancinelli R, Ceccanti M. Early exposure to ethanol but not red wine at the same alcohol concentration induces behavioral and brain neurotrophin alterations in young and adult mice. Neurotoxicology 2009; 30:59-71. DOI:10.1016/j. neuro.2008.11.009

Ceccanti M, De Nicolò S, Mancinelli R, Chaldakov G, Carito V, Ceccanti M, et al. NGF and BDNF long-term variations in the thyroid, testis and adrenal glands of a mouse model of fetal alcohol spectrum disorders. Ann Ist Super Sanita 2013; 49:383-390. DOI:10.4415/ANN-13- 04-11

Carito V, Ceccanti M, Ferraguti G, Coccurello R, Ciafrè S, Tirassa P, et al. NGF and BDNF alterations by prenatal alcohol exposure. Curr Neuropharmacol 2017; 15: DOI: 10.2174/1570159X15666170825101308

De Simone R, Aloe L. Influence of ethanol consumption on brain nerve growth factor and its target cells in developing and adult rodents. Ann Ist Super Sanita 1993; 29:179-183.

Angelucci F, Fiore M, Cozzari C, Aloe L. Prenatal ethanol effects on NGF level, NPY and ChAT immunoreactivity in mouse entorhinal cortex: A preliminary study. Neurotoxicol Teratol 1999; 21:415-425. DOI:10.1016/ S0892-0362(99)00005-7

Aloe L, Tirassa P. The effect of long-term alcohol intake on brain NGF target cells of aged rats. Alcohol 1992; 9:299-304. DOI:10.1016/0741-8329(92)90070-q

Lhullier AC, Moreira FP, da Silva RA, Marques MB, Bittencourt G, Pinheiro RT, et al. Increased Serum Neurotrophin Levels Related to Alcohol Use Disorder in a Young Population Sample. Alcohol Clin Exp Res 2015; 39:30-35. DOI:10.1111/acer.12592

Ceccanti M, Coccurello R, Carito V, Ciafrè S, Ferraguti G, Giacovazzo G, et al. Paternal alcohol exposure in mice alters brain NGF and BDNF and increases ethanol-elicited preference in male offspring. Addict Biol 2016; 21:776-787. DOI:10.1111/adb.12255

Miller MW, Mooney SM. Chronic exposure to ethanol alters neurotrophin content in the basal forebrain-cortex system in the mature rat: Effects on autocrine-paracrine mechanisms. J Neurobiol 2004; 60:490-498. DOI:10.1002/neu.20059

Mooney SM, Miller MW. Nerve growth factor neuroprotection of ethanol-induced neuronal death in rat cerebral cortex is age dependent. Neuroscience 2007; 149:372-381.

Li Z, Ding M, Thiele CJ, Luo J. Ethanol inhibits brain-derived neurotrophic factor-mediated intracellular signaling and activator protein-1 activation in cerebellar granule neurons. Neuroscience 2004; 126:149-162. DOI:10.1016/j.neuroscience.2004.03.028

Aloe L, Fiore M. TNF-alpha expressed in the brain of transgenic mice lowers central tyroxine hydroxylase immunoreactivity and alters grooming behavior. Neurosci Lett 1997; 238:65-68. DOI:10.1016/S0304- 3940(97)00850-1

Heberlein A, Schuster R, Kleimann A, Groh A, Kordon A, Opfermann B, et al. Joint effects of the epigenetic alteration of neurotrophins and cytokine signaling: A possible exploratory model of affective symptoms in alcohol-dependent patients? Alcohol Alcohol 2017; 52:277-281. DOI:10.1093/alcalc/agw100

Rassi AJ, Rassi A, Marcondes de Rezende J. American trypanosomiasis (Chagas disease). Infect Dis Clin North Am 2012; 26:275-291. DOI:10.1016/j. idc.2012.03.002

Rassi AJ, Rassi A, Marin-Neto JA. Chagas disease. Lancet (London, England) 2010; 375:1388-1402. DOI:10.1016/ S0140-6736(10)60061-X

Holmes PH, Miles MA. The trypanosomiases. CAB Int Wallingford, UK 2004.

Sofroniew M V, Howe CL, Mobley WC. Nerve Growth Factor Signaling, Neuroprotection, and Neural Repair. Annu Rev Neurosci 2001; 24:1217-1281. DOI:10.1146/ annurev.neuro.24.1.1217

Chuenkova M V., Pereira MA. The T. cruzi trans-sialidase induces PC12 cell differentiation via MAPK/ ERK pathway. Neuroreport 2001; 12:3715-3718. DOI:10.1097/00001756-200112040-00022

Hoff R, Teixeira RS, Carvalho JS, Mott KE. Trypanosoma cruzi in the cerebrospinal fluid during the acute stage of Chagas` disease. N Engl J Med 1978; 298:604-606. DOI:10.1056/NEJM197803162981106

De Souza MM, Andrade SG, Barbosa AA, Santos RTM, Alves VAF, Andrade ZA. Trypanosoma cruzi strains and autonomic nervous system pathology in experimental Chagas disease. Mem Inst Oswaldo Cruz 1996; 91:217-224. DOI:10.1590/S0074- 02761996000200018

Tafuri WL. Pathogenesis of lesions of the autonomic nervous system of the mouse in experimental acute Chagas` disease. Light and electron microscope studies. Am J Trop Med Hyg 1970; 19:405-417.

Molina HA, Cardoni RL, Rimoldi MT. The neuromuscular pathology of experimental Chagas` disease. J Neurol Sci 1987; 81:287-300. DOI:10.1016/0022- 510X(87)90104-3

Said G, Joskowicz M, Barreira AA, Eisen H. Neuropathy associated with experimental Chagas` disease. Ann Neurol 1985; 18:676-683. DOI:10.1002/ana.410180609

Bocchi EA, Bestetti RB, Scanavacca MI, Cunha Neto E, Issa VS. Chronic Chagas heart disease management: From etiology to cardiomyopathy treatment. J Am Coll Cardiol 2017; 70:1510-1524. DOI:10.1016/j.jacc.2017.08.004

Malik LH, Singh GD, Amsterdam EA. Chagas heart disease: An update. Am J Med 2015; 128:1251.e7-9. DOI:10.1016/j.amjmed.2015.04.036

Chuenkova M V, Pereiraperrin M. Neurodegeneration and neuroregeneration in Chagas disease. Adv Parasitol 2011; 76:195-233. DOI:10.1016/B978-0-12-385895- 5.00009-8

Chuenkova M V, PereiraPerrin M. Chagas` disease parasite promotes neuron survival and differentiation through TrkA nerve growth factor receptor. J Neurochem 2004; 91:385-394. DOI:10.1111/j.1471-4159.2004.02724.x

Palin MS, Mathew R, Towns G. Spinal neuroschistosomiasis. Br J Neurosurg 2015; 29:582-584. DOI:10.310 9/02688697.2015.1016890

Carod-Artal FJ. Neuroschistosomiasis. Expert Rev Anti Infect Ther 2010; 8:1307-1318. DOI:10.1586/eri.10.111

Ferrari TCA, Gazzinelli G, Correa-Oliveira R. Immune response and pathogenesis of neuroschistosomiasis mansoni. Acta Trop 2008; 108:83-88. DOI:10.1016/j. actatropica.2008.02.010

Nascimento-Carvalho CM, Moreno-Carvalho OA. Neuroschistosomiasis due to Schistosoma mansoni: a review of pathogenesis, clinical syndromes and diagnostic approaches. Rev Inst Med Trop Sao Paulo 2005; 47:179-184. DOI:S0036-46652005000400001

Pittella JEH. Neuroschistosomiasis. Brain Pathol 1997; 7:649-662. DOI:10.1111/j.1750-3639.1997.tb01080.x

Varilek GW, Weinstock J V., Pantazis NJ. Isolated hepatic granulomas from mice infected with Schistosoma mansoni contain nerve growth factor. Infect Immun 1991; 59:4443-4449.

Aloe L, Moroni R, Mollinari C, Tirassa P. Schistosoma mansoni infection enhances the levels of NGF in the liver and hypothalamus of mice. Neuroreport 1994; 5:1030- 1032. DOI:10.1097/00001756-199405000-00003

Aloe L, Moroni R, Fiore M, Angelucci F. Chronic parasite infection in mice induces brain granulomas and differentially alters brain nerve growth factor levels and thermal responses in paws. Acta Neuropathol 1996; 92:300-305. DOI:10.1007/s004010050522

Aloe L, Moroni R, Angelucci F, Fiore M. Role of TNF-α but not NGF in murine hyperalgesia induced by parasitic infection. Psychopharmacology (Berl) 1997; 134:287- 292. DOI:10.1007/s002130050451

Fiore M, Carere C, Moroni R, Aloe L. Passive avoidance response in mice infected with Schistosoma mansoni. Physiol Behav 2002;75:449-454. DOI:10.1016/S0031- 9384(01)00661-8

Fiore M, Aloe L. Neuroinflammatory implication of Schistosoma mansoni infection in the mouse. Arch Physiol Biochem 2001; 109:361-364. DOI:10.1076/ apab.109.4.361.4247

Fiore M, Moroni R, Alleva E, Aloe L. Schistosoma mansoni: Influence of infection on mouse behavior. Exp Parasitol 1996; 83:46-54. DOI:10.1006/expr.1996.0047

Aloe L, Fiore M. Neuroinflammatory implications of Schistosoma mansoni infection: New information from the mouse model. Parasitol Today 1998; 14:314-318. DOI:10.1016/S0169-4758(98)01283-6

Fiore M, Alleva E, Moroni R, Aloe L. Infection with Schistosoma mansoni in mice induces changes in nociception and exploratory behavior. Physiol Behav 1998; 65:347-353. DOI:10.1016/S0031-9384(98)00171-1

Tuszynski MH, Blesch A. Nerve growth factor: from animal models of cholinergic neuronal degeneration to gene therapy in Alzheimer`s disease. Prog Brain Res 2004; 146:441-449. DOI:10.1016/S0079-6123(03)46028-7

Tuszynski MH, Thal L, Pay M, Salmon DP, Sang UH, Bakay R, et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 2005; 11:551-555. DOI:10.1038/nm1239

Malkki H. Alzheimer disease: NGF gene therapy activates neurons in the AD patient brain. Nat Rev Neurol 2015; 11:548. DOI:10.1038/nrneurol.2015.170

Karami A, Eyjolfsdottir H, Vijayaraghavan S, Lind G, Almqvist P, Kadir A, et al. Changes in CSF cholinergic biomarkers in response to cell therapy with NGF in patients with Alzheimer`s disease. Alzheimers Dement 2015; 11:1316-1328. DOI:10.1016/j.jalz.2014.11.008

Tuszynski MH, Yang JH, Barba D, Hoi-Sang U, Bakay RAE, Pay MM, et al. Nerve growth factor gene therapy activation of neuronal responses in Alzheimer disease. JAMA Neurol 2015; 72:1139-1147. DOI:10.1001/jamaneurol.2015.1807

Parikh V, Evans DR, Khan MM, Mahadik SP. Nerve growth factor in never-medicated first-episode psychotic and medicated chronic schizophrenic patients: Possible implications for treatment outcome. Schizophr Res 2003; 60:117-123. DOI:10.1016/S0920-9964(02)00434-6

Machado-Vieira R, Manji HK, Zarate CAJ. The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disord 2009; 11 (Suppl 2):92-109. DOI:10.1111/j.1399-5618.2009.00714.x

Gorbachevskaya N, Bashina V, Gratchev V, Iznak A. Cerebrolysin therapy in Rett syndrome: Clinical and EEG mapping study. Brain Dev 2001 23:S90-93. DOI:10.1016/ S0387-7604(01)00349-7

Chaldakov GN, Fiore M, Ghenev PI, Beltowski J, Ranćić G, Tunçel N, et al. Triactome: Neuro-immune-adipose interactions. Implication in vascular biology. Front Immunol 2014; 5: DOI:10.3389/fimmu.2014.00130

Chaldakov GN, Aloe A, Hiriart M, Fiore M, Zhelezov M. Cognitive adiposcience: A gold mine to be unfolded. Adipobiology 2018; 10:75-79.




DOI: http://dx.doi.org/10.14748/bmr.v29.5845

Refbacks

Article Tools
Email this article (Login required)
About The Authors

Stefania Ciafrè
Institute of Translational Pharmacology, IFT-CNR, Rome, Italy
Italy

Valentina Carito
Institute of Cell Biology and Neurobiology, IBCN-CNR, Rome, Italy
Italy

Giampiero Ferraguti
Sapienza University of Rome, Italy
Italy

Department of Experimental Medicine

Antonio Greco
Sapienza University of Rome, Italy
Italy

Department of Sense Organs

Massimo Ralli
Sapienza University of Rome, Italy
Italy

Department of Sense Organs

Paola Tirassa
Institute of Cell Biology and Neurobiology, IBCN-CNR, Rome, Italy
Italy

George N. Chaldakov
Medical University of Varna
Bulgaria

Department of Anatomy and Cell Biology

Marisa Patrizia Messina
Sapienza University of Rome, Italy
Italy

Department of Gynecology, Obstetric, and Urology

Maria Luisa Attilia
Sapienza University of Rome, Italy
Italy

Centro Riferimento Alcologico Regione Lazio

Rosaria Ceccarelli
Sapienza University of Rome, Italy
Italy

Centro Riferimento Alcologico Regione Lazio

Luigi Tarani
Sapienza University of Rome, Italy
Italy

Department of Pediatrics, Medical Faculty

Mauroi Ceccanti
Sapienza University of Rome, Italy
Italy

Centro Riferimento Alcologico Regione Lazio

Marco Fiore
Institute of Cell Biology and Neurobiology, IBCN-CNR, Rome, Italy
Italy

Font Size


|