Scientific Online Resource System

Biomedical Reviews

Nanoparticles reshape the biomedical industry

Parichehr Hassanzadeh, Fatemeh Atyabi, Rassoul Dinarvand


Over the last decades, increasing interest has been attracted towards the nanotechnology which provide a set of promising research tools and theranostic approaches. Tremendous research efforts in nanofabrication technology have led to the production of biocompatible nanostructures and advanced carriers with various configurations for protection of the loaded biomolecules or drugs against the metabolism or excretion. Furthermore, controlled delivery and targeted therapy may result in the improved therapeutic effects against a variety of diseases and reduced adverse effects of drugs. The efficiency of protein drugs may be negatively affected by their limited transportation within the body and short half-lives. Application of nanoparticles may significantly improve the pharmacological profiles of protein drugs. In neurology, high-resolution imaging techniques, nanoengineered materials capable of interaction with the nervous systems, and nanopharmaceuticals with minimal toxicity and improved bioavailability may be of great theranostic significance. This may provide remarkable breakthroughs in the pharmaceutical industry and health-care system. In the present review, the significance of nanotechnology and modeling approaches in health-care system has been highlighted.


nanomedicine, drug delivery, nanopharmaceuticals

Full Text


Heta Y, Kumaki K, Hifumi H, Citterio D, Tanimoto A, Suzuki K. Gadolinium containing photochromic micelles as potential magnetic resonance imaging traceable drug carriers. Photochem Photobiol 2012; 88: 876-883. DOI: 10.1111/j.1751-1097.2012.01124.x.

Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, Balabanyan VU, Voronina TA, Trofimov SS, et al. Brain targeting of nerve growth factor or using poly(butyl cyanoacrylate) nanoparticles. J Drug Target 2009; 17: 564-574. DOI: 10.1080/10611860903112842.

Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev 2012; 64: 701-705. DOI: 10.1016/j.addr.2011.12.006.

Qiu L, Zheng C, Jin Y, Zhu K. Polymeric micelles as nanocarriers for drug delivery. Expert Opin Ther Pat 2007; 17: 819-830. DOI:10.1517/13543776.17.7.819.

Sun NF, Meng QY, Tian AL, Hu SY, Wang RH, Liu ZX, et al. Nanoliposome mediated FL/TRAIL double-gene therapy for colon cancer: in vitro and in vivo evaluation. Cancer Lett 2012; 315: 69-77. DOI:10.1016/j.canlet. 2011.10.010.

Hassanzadeh P, Atyabi F, Dinarvand R. Nanoencapsulation: A Promising strategy for biomedical application of ferulic acid. Biomed Rev 2017; 28: 26-34. DOI: http://

Hassanzadeh P, Arbabi E, Rostami F, Atyabi F, Dinarvand R. Aerosol delivery of ferulic acid-loaded nanostructured lipid carriers: A promising treatment approach against the respiratory disorders. Physiol Pharmacol 2017; 21: 331-342. article-1-1295-en.html.

Hassanzadeh P. Nanopharmaceuticals: Innovative theranostics for the neurological disorders. Biomed Rev 2014; 25: 25-34. DOI: 10.14748/bmr.v25.1043.

Fuchs JR, Nasseri BA, Vacanti JP. Tissue engineering: a 21st century solution to surgical reconstruction. Ann Thorac Surg 2001; 72: 577-591. PMID:11515900.

Hassanzadeh P. Tissue engineering and growth factors: updated evidence. Biomed Rev 2012; 23: 19-35.

Hassanzadeh P, Atyabi F, Dinarvand R. Tissue engineering: Still facing a long way ahead. J Control Release 2018; 279: 181-197. DOI:10.1016/j.jconrel.2018.04.024

Jan E, Kotov NA. Successful differentiation of mouse neural stem cells on layer by layer assembled single walled carbon nanotube composite. Nano Lett 2007; 7: 1123-1128. DOI: 10.1021/nl0620132.

Hassanzadeh P, Atyabi F, Dinarvand R. Application of carbon nanotubes for controlled release of growth factors or endocannabinoids: A breakthrough in biomedicine. Biomed Rev 2016; 27: 19-27. DOI: 10.14748/bmr. v27.2105.

Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Nerve growth factor-carbon nanotube complex exerts prolonged protective effects in an in vitro model of ischemic stroke. Life Sci 2017; 179: 15-22. DOI: 10.1016/j. lfs.2016.11.029.

Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Application of carbon nanotubes as the carriers of the cannabinoid, 2- arachidonoylglycerol: Towards a novel treatment strategy in colitis. Life Sci 2017; 179: 66-72. DOI:10.1016/j.lfs.2016.11.015.

Hassanzadeh P, Arbabi E, Rostami F, Atyabi F, Dinarvand R. Carbon nanotubes prolong the regulatory action of nerve growth factor on the endocannabinoid signaling. Physiol Pharmacol 2015; 19: 167-176. ppj/article-1-1112-en.html.

Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Carbon nanotubes provide longer lasting gastroprotective effects for anandamide in stress-induced gastric ulcer in rat. Physiol Pharmacol 2018; 22: 38-47. http://phypha. ir/ppj/article-1-1266-en.html.

Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Carbon nanotube-anandamide complex exhibits sustained protective effects in an in vitro model of stroke. Physiol Pharmacol 2016; 20: 12-23. 1-1155-en.html.

Morawski AM, Winter PM, Crowder KC, Caruthers SD, Fuhrhop RW, Scott MJ, et al. Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn Reson Med 2004; 51: 480-486. DOI:10.1002/ mrm.20010.

Hassanzadeh P. New perspectives in biosensor technology. Gastroenterol Hepatol Bed Bench 2010; 3: 105-107.

Hassanzadeh P, Fullwood I, Sothi S, Aldulaimi D. Cancer nanotechnology. Gastroenterol Hepatol Bed Bench 2011; 4: 63-69. PMID: 24834159.

Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev 2017; 17: 20-37. DOI:10.1038/nrc.2016.108.

Cui Y, Qingqiao W, Hongkun P, Lieber CM. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001; 293: 1289-1292. DOI: 10.1126/science.1062711.

Su M, Li S, Dravid V. Microcantilever resonance-based DNA detection with nanoparticle probes. Appl Phys Lett 2003; 82: 3562-3564. DOI:10.1063/1.1576915

Santra S, Tan W. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal Chem 2001; 73: 4988-4993. https://

Zhao X, Tan W. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J Am Chem Soc 12003; 25: 11474-11475. DOI: 10.1021/ ja0358854.

Harishingani MG, , Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 2003; 348: 2491-2499. DOI:10.1056/NEJMoa022749.

Kircher MF, Mahmood U, King RS, Weissleder R, Josephson L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res 2003; 63: 8122- 8125.PMID:14678964.

Park JW. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res 2002; 4: 95-99. https://

Li KCP, Pandit SD, Guccione S, Bednarski MD. Molecular imaging applications in nanomedicine. Biomed Microdevices 2004; 6: 113-116. DOI:10.1023/ B:BMMD.0000031747.05317.81.

Winter PM, Wickline SA, Lanza GM. Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel αvβ3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res 2003; 63: 5838-5843.

Duncan R. The dawning era of polymer therapeutics. Nature Rev Drug Discov 2003; 2: 347-360. DOI:10.1038/ nrd1088.

Gilles EM, Frechet JMJ. Designing macromolecules for therapeutic applications: Polyester dendrimerpolyethylene oxide `bow-tie` hybrids with tunable molecular weights and architecture. J Am Chem Soc 2002; 124: 14137-14146. PMID:12440912.

Yan F, Kopelman R. The embedding of metatetra( hydroxyphenyl)-chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH-dependent optical properties. Photochem Photobiol 2003; 78: 587-591. PMID:14743867.

Cohen MH, Melnik K, Boiasrki A, Ferrari M, Martin FJ. Microfabrication of silicon-based nanoporous particulates for medical applications. Biomed Microdevices 2003; 5: 253-259.DOI: DOI:10.1023/A:1025768411300.

Hirsch LR, Halas NJ, West JL. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003; 100: 13549-13554.

Decuzzi P, Lee S, Decuzzi M, Ferrari M. Adhesion of micro-fabricated particles on vascular endothelium: a parametric analysis. Ann Biomed Eng 2004; 32: 793-802.

Quintana A, Baker JN Jr. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 2002; 19: 1310-1316. pubmed/12403067.

Jain RK. Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev 2001; 46: 149-168.

Decuzzi P, Lee S, Bhushan B, Ferrari M. A theoretical model for the margination of particles within blood vessels. Ann Biomed Eng 2005; 33: 179-190. DOI:10.1007/ s10439-005-8976-5.

Wu J, Akaka T, Maeda H. Modulation of enhanced permeability in tumor by a bradykinine antagonist, a cyclooxygenase inhibitor. Cancer Res 1998; 58: 159-165.

Chen G, Lu J, Lam C, Yu Y. A novel green synthesis approach for polymer nanocomposites decorated with silver nanoparticles and their antibacterial activity. Analyst 2014; 139: 5793-5799. pubmed/25199560.

Cheng LC, Chen HM, Lai TC, Chan YC, Liu RS, Sung JC, et al. Targeting polymeric fluorescent nanodiamond-gold/silver multi-functional nanoparticles as a light-transforming hyperthermia reagent for cancer cells. Nanoscale 2013; 5: 3931-3940. https://www.ncbi.nlm.

Hassanzadeh P, Atyabi F, Dinarvand R. Linkers: The key elements for the creation of efficient nanotherapeutics. J Control Release 2018; 270: 260-267. DOI:10.1016/j. jconrel.2017.12.007

Demento SL, Eisenbart SC, Foellmer HG, Platt C, Caplan MJ, Saltzman WM, et al. Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine 2009; 27: 3013-3021.https://www.ncbi.

Lei T, Fernandez-Fernandez A, Manchanda R, Huang YC, McGoron AJ. Near-infrared dye loaded polymeric nanoparticles for cancer imaging and therapy and cellular response after laser-induced heating. Beilstein J Nanotechnol 2014; 5: 313-322. DOI:10.3762/bjnano.5.35.

Kim K, Lee M, Park H, Kim JH, Kim S, Chung H, et al. Cell-permeable and biocompatible polymeric nanoparticles for apoptosis imaging. J Am Chem Soc 2006; 128: 3490-3491. DOI: 10.1021/ja057712f.

Li SY, Wang M. Hybrid polymer-metal nanospheres based on highly branched nanoparticles for potential medical applications. IET Nanobiotechnol 2012; 6: 136-143. DOI: 10.1049/iet-nbt.2011.0050.

Woodrow KA, Cu Y, Booth CJ, Saucier-Sawyer JK, Wood MJ, Saltzman WM. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat Materials 2009; 8: 526-533.

Jacobs A, Voges J, Reszka R, Lercher M, Gossmann A, Kracht L, et al. Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 2001; 358: 727-729.

Brem H, Piantadosi S, Burger PC, Walker M, Selker R, Vick NA, et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet 1995; 345: 1008-1012.

Chen MY, Hoffer A, Morrison PF, Hamilton JF, Hughes J, Schlageter KS, et al. Surface properties, more than size, limiting convective distribution of virus-sized particles and viruses in the central nervous system. J Neurosurgery 2005; 103: 311-319.

Sawyer AJ, Saucier-Sawyer JK, Booth CJ, Liu J, Patel T, Piepmeier JM, et al. Convection-enhanced delivery of camptothecin-loaded polymer nanoparticles for treatment of intracranial tumors. Drug Deliv Trans Res 2011; 1: 34-42. [PubMed:21691426].

Saucier-Sawyer JK, Seo YE, Gaudin A, Quijano E, Song E, Sawyer AJ, et al. Distribution of polymer nanoparticles by convection-enhanced delivery to brain tumors. J Control Release 2016; 232: 103-112. DOI: 10.1016/j. jconrel.2016.04.006.

Kunwar S, Chang S, Westphal M, Vogelbaum M, Sampson J, Barnett G, et al. Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neurooncology 2010; 12: 871-881. https://

Grodzinski D. Nanoparticle Trojan horses gallop from the lab into the clinic. Science 2010; 330: 314-315. DOI: 10.1126/science.330.6002.314.

Fung LK, Shin M, Tyler B, Brem H, Saltzman WM. Chemotherapeutic drugs released from polymers: distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea in the rat brain. Pharm Res 1996; 13: 671-682.

Yemisci M, Bozdag S, Cetin M, Soylemezoglu F, Capan Y, Dalkara T, et al. Treatment of malignant gliomas with mitoxantrone-loaded poly (lactide-co-glycolide) microspheres. Neurosurgery 2006; 59: 1296-1302.

Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. Passage of peptides through the blood brain barrier with colloidal polymer particles (nanoparticles). Brain Res 1995; 674: 171-174.

Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 2002; 10: 317-325. [PubMed: 12164380].

Schroeder U, Schroeder H, Sabel BA. Body distribution of 3H-labelled dalargin bound to poly(butyl cyanoacrylate) nanoparticles after i.v. injections to mice. Life Sci 2000; 66: 495-502. [PubMed: 10794066].

Kulkarni SA, Feng SS. Effects of surface modification on delivery efficiency of biodegradable nanoparticles across the blood-brain barrier. Nanomedicine 2011; 6: 377-394. [PubMed: 21385139].

Liu M, Li H, Luo G, Liu Q, Wang Y. Pharmacokinetics and biodistribution of surface modification polymeric nanoparticles. Arch Pharm Res 2008; 31: 547-554. [PubMed:18449515].

Rao KS, Reddy MK, Horning JL, Labhasetwar V. TAT-conjugated nanoparticles for the CNS delivery of anti- HIV drugs. Biomaterials 2008; 29: 4429-4438. [PubMed: 18760470].

Songjiang Z, Lixiang W. Amyloid-beta associated with chitosan nano-carrier has favorable immunogenicity and permeates the BBB. AAPS Pharm Sci Tech 2009; 10: 900-905. [PubMed:19609682].

Karatas H, Aktas Y, Gursoy-Ozdemir Y, Bodur E, Yemisci M, Caban S, et al. A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection. J Neurosci 2009; 29: 13761-13769. [PubMed: 19889988].

Kumar P, Wu H, McBride JL, Jung KE, Hee Kim M, Davidson BL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007; 448: 39-43. [PubMed: 17572664].

Fang JY, Fang CL, Liu CH, Su YH. Lipid nanoparticles as a vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm 2008; 70: 633-640. DOI: 10.1016/j.ejpb.2008.05.008.

Müller RH, Maeder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery. A review of the state of the art. Eur J Pharm Biopharm 2000; 50: 161-177. DOI:10.1016/S0939-6411(00)00087-4.

Puri A, Loomis K, Smith B, Lee JH, Yavlovich A, Heldman E, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit Rev Ther Drug Carrier Syst 2009; 26: 523-580. PMID: 20402623.

Shi F, Yang G, Guo T, Du Y, Ren NF. Formulation design, preparation, and in vitro and in vivo characterizations of β-Elemene-loaded nanostructured lipid carriers. Int J Nanomedicine 2013; 8: 2533-2541. https://www.ncbi.

Sai Li, Zhigui Su, Minjie Sun, Yanyu Xiao, Feng Cao, Aiwen Huang, et al. An arginine derivative contained nanostructure lipid carriers with pH-sensitive membranolytic capability for lysosomolytic anti-cancer drug delivery. Int J Pharm 2012; 436: 248-257. https://www.

Shenoy VS, Vijay IK, Murthy RS. Tumour targeting: biological factors and formulation advances in injectable lipid nanoparticles. J Pharm Pharmacol 2005; 57: 411- 421.

Hassanzadeh P, Arbabi E, Atyabi F, Dinarvand R. Ferulic acid-loaded nanostructured lipid carriers: A promising nanoformulation against the ischemic neural injuries. Life Sci 2018; 193: 64-76. DOI:10.1016/j. lfs.2017.11.046.

Hassanzadeh P, Atyabi F, Dinarvand R. Dehpour AR, Azhdarzadeh M, Dinarvand M. Application of nanostructured lipid carriers: the prolonged protective effects for sesamol in in vitro and in vivo models of ischemic stroke via activation of PI3K signalling pathway. DARU J Pharm Sci 2017; 25: 1-16. DOI 10.1186/s40199-017- 0191-z.

Mendes AI, Silva AC, Catita JAM, Cerqueira F, Gabriel C, Lopes CM. Miconazole-loaded nanostructured lipid carriers (NLC) for local delivery to the oral mucosa: Improving antifungal activity. Colloids Surf B: Biointerfaces 2013; 111: 755- 763. DOI: 10.1016/j. colsurfb.2013.05.041.

Rahman HS, Rasedee HS, How CW, Abdul AB, Zeenathul NA, Othman HH, et al. Zerumbone-loaded nanostructured lipid carriers: preparation, characterization, and antileukemic effect. Int J Nanomed 2013; 8: 2769-2781. DOI: 10.2147/IJN.S54346.

Bondà ML, Azzolina A, Craparo EF, Botto C, Amore E, Giammona G, et al. Entrapment of an EGFR inhibitor into nanostructured lipid carriers (NLC) improves its antitumor activity against human hepatocarcinoma cells. J Nanobiotech 2014; 12: 1-9. DOI: 10.1186/1477-3155- 12-21.

Elmowafy M, Ibrahim HM, Ahmed MA, Shalaby K, Salama A, Hefesha H. Atorvastatin-loaded nanostructured lipid carriers (NLCs): strategy to overcome oral delivery drawbacks. Drug Deliv 2017; 24: 932-941. DOI:10.108 0/10717544.2017.1337823.

Nam SH, Ying X, Park JS. Investigation of Tacrolimus loaded nanostructered lipid carrier for topical drug delivery. Bull Korean Chem Soc 2011; 32: 956-960. DOI: 10.5012/bkcs.2011.32.3.956.

Patlolla RR, Chougule M, Patel AR, Jackson T, Tata PN, Singh M. Formulation, characterization and pulmonary deposition of nebulized celecoxib encapsulated nanostructured lipid carriers. J Control Release 2010; 144: 233-241.

Araujo JS, Nikolic MA, Egea EB, Garcia ML. Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye. Colloids Surf B Biointerfaces 2011; 88: 150-157. https://www.ncbi.nlm.

Zhanga WL, Gua X, Baib H, Yang RH, Donga CD, Liu JP. Nanostructured lipid carriers constituted from high-density lipoprotein components for delivery of a lipophilic cardiovascular drug. Int J Pharm 2010; 391: 313-321.

Roukes M. Plenty of room, indeed. Sci Am 2001; 285: 54- 57.

Chiesa S, de la Iglesia D, Crespo J, Martin-Sanchez F, Kern J, Potamias G, et al. European efforts in nanoinformatics research applied to nanomedicine. Stud Health Technol Inform 2009; 150: 757-761. PMID:19745412.

Shah S, Liu Y, Hu W, Gao J. Modeling particle shape-dependent dynamics in nanomedicine. J Nanosci Nanotechnol 2011; 11: 919-928. DOI: 10.1166/jnn.2011.3536.

Lehtinen J, Magarkar A, Stepniewski M, Hakola S, Bergman M, Róg T, et al. Analysis of cause of failure of new targeting peptide in PEGylated liposome: molecular modeling as rational design tool for nanomedicine. Eur J Pharm Sci 2012; 4: 121-130. DOI:10.1016/j. ejps.2012.02.009.

Gentile F, Ferrari M, Decuzzi P. The transport of nanoparticles in blood vessels: the effect of vessel permeability and blood rheology. Ann Biomed Eng 2008; 36: 254-261. DOI: 10.1007/s10439-007-9423-6.

Lee TR, Chang YS, Choi JB, Liu WK, Kim YJ. Numerical simulation of a nanoparticle focusing lens in a microfluidic channel by using immersed finite element method. J Nanosci Nanotechnol 2009; 9: 7407-7411. PMID:19908798.

Poater A, Gallegos Saliner A, Carbo-Dorca R, Poater J, Solà M, Cavallo L, et al. Modeling the structure-property relationships of nanoneedles: a journey toward nanomedicine. Comput Chem 2009; 30: 275-284. DOI: 10.1002/ jcc.21041.

Costa EC, Gaspar VM, Marques JG, Coutinho P, Correia IJ. Evaluation of nanoparticle uptake in coculture cancer models. PLoS One 2013; 8: e70072. DOI: 10.1371/journal.pone.0070072.

Evans WE, Mcleod HL. Pharmacogenomics - drug disposition, drug targets, and side effects. N Engl J Med 2003; 348: 538-549. DOI:10.1056/NEJMra020526.

Ghosh S, Matsuoka Y, Asai Y, Hsin KY. Software for systems biology: from tools to integrated platforms. Nat Rev Genet 2011; 12: 821-832. DOI: 10.1038/nrg3096.

Hossain SS, Zhang Y, Liang X, Hussain F, Ferrari M, Hughes TJ, et al. In silico vascular modeling for personalized nanoparticle delivery. Nanomedicine 2013; 8: 343-357. DOI:10.2217/nnm.12.124.

Kotaleski JH, Blackwell KT. Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nat Rev Neurosci 2010; 11: 239-251. DOI: 10.1038/nrn2807.

Schoeberl B, Eichler-Jonsson C, Gilles ED, Müller G. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 2002; 20: 370-375. DOI:10.1038/nbt0402-370.

Hassanzadeh P. Computational modelling: Moonlighting on the neuroscience and medicine. Biomed Rev 2013; 24: 25-31. DOI: 10.14748/bmr.v24.19.

Hassanzadeh P, Atyabi F, Dinarvand R. Application of modelling and nanotechnology-based approaches: The emergence of breakthroughs in theranostics of central nervous system disorders. Life Sci 2017; 182: 93-103. DOI:10.1016/j.lfs.2017.06.001.

Hassanzadeh P, Atyabi F, Dinarvand R. Ignoring the modeling approaches: Towards the shadowy paths in nanomedicine. J Control Release 2018; 280: 58-75. DOI:10.1016/j.jconrel.2018.04.042.

Hassanzadeh P, Atyabi F, Dinarvand R. Creation of nanorobots: Both state-of-the-science and state-of-the-art. Biomed Rev 2016; 27: 37-44.



Article Tools
Email this article (Login required)
About The Authors

Parichehr Hassanzadeh
Tehran University of Medical Sciences, Tehran, Iran
Iran, Islamic Republic of

Nanotechnology Research Center, Faculty of Pharmacy

Fatemeh Atyabi
Tehran University of Medical Sciences, Tehran, Iran
Iran, Islamic Republic of

Nanotechnology Research Center, Faculty of Pharmacy

Department of Pharmaceutics, Faculty of Pharmacy

Rassoul Dinarvand
Tehran University of Medical Sciences, Tehran, Iran
Iran, Islamic Republic of

Nanotechnology Research Center, Faculty of Pharmacy

Department of Pharmaceutics, Faculty of Pharmacy

Font Size