Scientific Online Resource System

Biomedical Reviews

Microglia are not brain macrophages?

Marin Zhelezov, Anton B. Tonchev

Abstract

Microglia are commonly referred to as the brain`s macrophages, which leads to confusion due to the presence of several other macrophage populations in the central nervous system. The morphological, molecular and ontological differences between these cells are subtle. They need to be clearly defined in the light of the new evidence suggesting that microglia originate not in the bone marrow, but from yolk sac, or, possibly, pericyte progenitors. Recent paradigm shift redefines the specific roles of microglia during brain development, health and disease. Microglia have emerged as key players in important events such as neurogenesis, programmed cell death, elimination of synapses and remodeling of neural circuits. These novel discoveries imply a need for a better morphological and molecular differentiation of mononuclear phagocyte populations and their subtypes in the brain. This may improve our knowledge of their specific contributions and possible pharmacological manipulation in brain health and disease.

Keywords

brain, macrophages, microglia, monocyte-macrophage system, pericytes, epiblast, memory, disease

Full Text


References

Korin B, Ben-Shaanan TL, Schiller M, Dubovik T, Azulay- Debby H, Boshnak NT, et al. High-dimensional, single-cell characterization of the brain`s immune compartment. Nat Neurosci 2017;20(9):1300-1309. DOI: 10.1038/nn.4610

Lopez-Atalaya JP, Askew KE, Sierra A, Gomez-Nicola D. Development and maintenance of the brain`s immune toolkit: Microglia and non-parenchymal brain macrophages: Development and maintenance of the brain`s immune toolkit. Dev Neurobiol 2017;78: 561-579. DOI: 10.1002/ dneu.22545

Prinz M, Erny D, Hagemeyer N. Ontogeny and homeostasis of CNS myeloid cells. Nat Immunol 2017;18(4):385- 392. DOI: 10.1038/ni.3703

Herz J, Filiano AJ, Smith A, Yogev N, Kipnis J. Myeloid cells in the central nervous system. Immunity 2017;46(6):943-956. DOI: 10.1016/j.immuni.2017.06.007

Priller J, Flügel A, Wehner T, Boentert M, Haas CA, Prinz M, et al. Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med 2001;7(12):1356-1361. DOI: 10.1038/nm1201-1356

Djukic M. Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice. Brain 2006;129(9):2394- 403. DOI: 10.1093/brain/awl206

Mildner A, Mack M, Schmidt H, Brück W, Djukic M, Zabel MD, et al. CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 2009;132(9):2487-500. DOI:10.1093/ brain/awp144

Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 2012;13(11):1118-1128. DOI: 10.1038/ni.2419

Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci 2014;17(1):131-43. DOI: 10.1038/nn.3599

Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 2014;159(6):1327-40. DOI: 10.1016/j.cell.2014.11.023

Lavin Y, Winter D, Blecher-Gonen R, David E, Keren- Shaul H, Merad M, et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 2014;159(6):1312-1326. DOI: 10.1016/j. cell.2014.11.018

Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB, et al. New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci USA 2016;113(12):E1738-1746. DOI: 10.1073/ pnas.1525528113

Crotti A, Ransohoff RM. Microglial physiology and pathophysiology: Insights from genome-wide transcriptional profiling. Immunity 2016;44(3):505-515. DOI: 10.1016/j. immuni.2016.02.013

Buttgereit A, Lelios I, Yu X, Vrohlings M, Krakoski NR, Gautier EL, et al. Sall1 is a transcriptional regulator defining microglia identity and function. Nat Immunol 2016;17(12):1397-1406. DOI: 10.1038/ni.3585

Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. Origin and differentiation of microglia. Front Cell Neurosci 2013;7:45. DOI: 10.3389/fncel.2013.00045

Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010;330(6005):841-845. DOI: 10.1126/science.1194637

Hoeffel G, Ginhoux F. Ontogeny of tissue-resident macrophages. Front Immunol 2015; 6:486. DOI: 10.3389/ fimmu.2015.00486

Ginhoux F, Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 2016;44(3):439-449. DOI: 10.1016/j.immuni.2016.02.024

Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, et al. Microglia emerge from erythromyeloid precursors via Pu. 1-and Irf8-dependent pathways. Nat Neurosci 2013;16(3):273-80. DOI: 10.1038/nn.3318

Gomez E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 2015;518(7540):547-551. DOI: 10.1038/nature13989

Goldmann T, Wieghofer P, Jordão MJC, Prutek F, Hagemeyer N, Frenzel K, et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol 2016;17(7):797-805. DOI: 10.1038/ni.3423

Askew K, Li K, Olmos-Alonso A, Garcia-Moreno F, Liang Y, Richardson P, et al. Coupled Proliferation and Apoptosis Maintain the Rapid Turnover of Microglia in the Adult Brain. Cell Rep 2017;18(2):391-405. DOI: 10.1016/j.celrep.2016.12.041

Réu P, Khosravi A, Bernard S, Mold JE, Salehpour M, Alkass K, et al. The Lifespan and Turnover of Microglia in the Human Brain. Cell Rep 2017;20(4):779-784. DOI: 10.1016/j.celrep.2017.07.004

Tay TL, Mai D, Dautzenberg J, Fernández-Klett F, Lin G, Sagar, et al. A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat Neurosci. 2017;20(6):793-803. DOI: 10.1038/nn.4547

Wilson EH, Weninger W, Hunter CA. Trafficking of immune cells in the central nervous system. J Clin Invest 2010;120(5):1368-1379. DOI: 10.1172/JCI41911

Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 2012;12(9):623-35. DOI: 10.1038/ nri3265

Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FMV. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 2007;10(12):1538-43. DOI: 10.1038/nn2014

Bruttger J, Karram K, Wörtge S, Regen T, Marini F, Hoppmann N, et al. Genetic Cell Ablation Reveals Clusters of Local Self-Renewing Microglia in the Mammalian Central Nervous System. Immunity 2015;43(1):92-106. DOI: 10.1016/j.immuni.2015.06.012

Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, et al. Tissue-Resident Macrophages Self-Maintain Locally throughout Adult Life with Minimal Contribution from Circulating Monocytes. Immunity 2013;38(4):792- 804. DOI: 10.1016/j.immuni.2013.04.004

Sheng J, Ruedl C, Karjalainen K. Most Tissue-Resident Macrophages Except Microglia Are Derived from Fetal Hematopoietic Stem Cells. Immunity 2015;43(2):382- 393. DOI: 10.1016/j.immuni.2015.07.016

Flügel A, Bradl M, Kreutzberg GW, Graeber MB. Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy. J Neurosci Res 2001;66(1):74-82. DOI: 10.1002/jnr.1198

Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch U-K, Mack M, et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 2007;10(12):1544-53. DOI: 10.1038/nn2015

Varvel NH, Grathwohl SA, Baumann F, Liebig C, Bosch A, Brawek B, et al. Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proc Natl Acad Sci USA 2012;109(44):18150- 18155. DOI: 10.1073/pnas.1210150109

Eglitis MA, Mezey É. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 1997;94(8):4080-4085. DOI: 10.1073/pnas.94.8.4080

Bechmann I, Goldmann J, Kovac AD, Kwidzinski E, Simbürger E, Naftolin F, et al. Circulating monocytic cells infiltrate layers of anterograde axonal degeneration where they transform into microglia. FASEB J 2005;19(6):647- 649. DOI: 10.1096/fj.04-2599fje

Simard AR, Soulet D, Gowing G, Julien J-P, Rivest S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer`s disease. Neuron 2006;49(4):489-502. DOI: 10.1016/j. neuron.2006.01.022

Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, et al. Infiltrating Blood-Derived Macrophages Are Vital Cells Playing an Anti-inflammatory Role in Recovery from Spinal Cord Injury in Mice. PLoS Med. 2009;6(7):e1000113. DOI: 10.1371/journal. pmed.1000113

London A, Itskovich E, Benhar I, Kalchenko V, Mack M, Jung S, et al. Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages. J Exp Med. 2011;208(1):23-39. DOI: 10.1084/jem.20101202

Shechter R, Raposo C, London A, Sagi I, Schwartz M. The Glial Scar-Monocyte Interplay: A Pivotal Resolution Phase in Spinal Cord Repair. PLoS ONE. 2011;6(12):e27969. DOI: 10.1371/journal.pone.0027969

Gardner RL, Rossant J. Investigation of the fate of 4.5 day post-coitum mouse inner cell mass cells by blastocyst injection. J Embryol Exp Morphol 1979; 52: 141-152

Fogg DK, Sibon C, Miled C, Jung S, Aucouturier P, Littman DR, et al. A clonogenic bone barrow progenitor specific for macrophages and dendritic cells. Science 2006; 311(5757):83-87. DOI:10.1126/science.1117729

Ginhoux F, Prinz M. Origin of Microglia: Current Concepts and Past Controversies. Cold Spring Harb Perspect Biol 2015;7:a020537. DOI:10.1101/cshperspect.a020537

Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 2015; 518(7540): 547-551. DOI:10.1038/nature13989

Spittau B. Aging microglia - phenotypes, functions and implications for age-related neurodegenerative diseases. Front Aging Neurosci 2017; 9:194. DOI: 10.3389/ fnagi.2017.00194

Davidoff MS. The Leydig cells of the testis originate from the microvascular pericytes. Biomed Rev 2017; 28: 5-25. DOI: http://dx.doi.org/10.14748/bmr.v28.4448

Virgintino D, Girolamo F, Errede M, Capobianco C, Robertson D, Stallcup WB, et al. (2007) An intimate interplay between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis. Angiogenesis 10(1): 35-45. DOI: 10.1007/s10456-006-9061-x

Balabanov R, Washington R, Wagnerova J, Dore-Duffy P. CNS microvascular pericytes express macrophage-like function, cell surface integrin αM, and macrophage marker ED-2. Microvasc Res 1996; 52(2): 127-142. DOI: 10.1006/mvre.1996.0049

Thomas WE. Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Brain Res Rev 1999; 31(1): 42-57. DOI:10.1016/S0165-0173(99)00024-7

Guillemin GJ, Brew BJ. Microglia, macrophages perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol 2004; 75(3): 388-3297. DOI: 10.1189/jlb.0303114

Andriezen WL. The neuroglia elements in the human brain. Br Med J 1893; 2:227-230

Rezaie P, Hanisch U-K. Historical Content, Chapter 2. In: M.-È. Tremblay, A. Sierra, editors Microglia in Health and Disease. Springer Science+Business Media New York 2014; pp 7-46. DOI 10.1007/978-1-4939-1429-6_2

Barón M, Gallego A. The relation of the microglia with the pericytes in the cat cerebral cortex. Z. Zellforsch 1972;128(1): 42-57. DOI:10.1007/BF00306887

Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 2014; 82(2):380-397. DOI: 10.1016/j. neuron.2014.02.040

Pacini S, Petrini I. Are MSCs angiogenic cells? New insights on human nestin-positive bone-marrow-derived multipotent cells. Front Cell Dev Biol 2014;2, Article 20. DOI: 10.3389/fcell.2014.00020

Davidoff MS, Middendorff R, Enikolopov G, Rietmacher D, Holstein AF, Müller D. Progenitor cells of the testosterone-producing Leydig cells revealed. J Cell Biol 2004;167: 935-944. DOI: 10.1083/jcb.200409107

Mori S, Leblond CP. Identification of microglia in light and electron microscopy. J Comp Neurol 1969;135(1): 57-79

Eichmann A, Bouvrée K, Pardanaud L. Vasculogenesis and angiogenesis in development. In: D Marmé, N Fusenig, editors. Tumor Angiogenesis. Basic Mechansims and Cancer Therapy. Springer, 2008, pp. 31-45

Arora R, Papaioannou VE. The murine allantois: a model system for the study of blood vessel formation. Blood 2012; 120(13): 2562-2572. DOI:10.1182/ blood-2012-03-390070

Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 2018;18(4):225- 242. DOI: 10.1038/nri.2017.125

Aguzzi A, Barres BA, Bennett ML. Microglia: scapegoat, saboteur, or something else? Science 2013;339(6116):156- 161.

Zusso M, Methot L, Lo R, Greenhalgh AD, David S, Stifani S. Regulation of Postnatal Forebrain Amoeboid Microglial Cell Proliferation and Development by the Transcription Factor Runx1. J Neurosci. 2012;32(33):11285-98. DOI: 10.1523/JNEUROSCI.6182-11.2012

Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci. 2016;19(8):987-91. DOI: 10.1038/nn.4338

Salter MW, Stevens B. Microglia emerge as central players in brain disease. Nat Med. 2017;23(9):1018-27. DOI: 10.1038/nm.4397

Nimmerjahn A. Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo. Science 2005;308(5726):1314-1318. DOI: 10.1126/science.1110647

Li Y, Du X, Liu C, Wen Z, Du J. Reciprocal Regulation between Resting Microglial Dynamics and Neuronal Activity In Vivo. Dev Cell 2012;23(6):1189-202. DOI: 10.1016/j.devcel.2012.10.027

Abiega O, Beccari S, Diaz-Aparicio I, Nadjar A, Layé S, Leyrolle Q, et al. Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling. PLOS Biol 2016;14(5):e1002466. DOI: 10.1371/journal. pbio.1002466

Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8(6):752-758. DOI: 10.1038/nn1472

Tremblay M-È, Lowery RL, Majewska AK. Microglial Interactions with Synapses Are Modulated by Visual Experience. PLoS Biol. 2010;8(11):e1000527. DOI: 10.1371/ journal.pbio.1000527

Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic Pruning by Microglia Is Necessary for Normal Brain Development. Science. 2011;333(6048):1456-1458. DOI: 10.1126/science.1202529

Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement- Dependent Manner. Neuron 2012;74(4):691-705. DOI: 10.1016/j.neuron.2012.03.026

Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The Classical Complement Cascade Mediates CNS Synapse Elimination. Cell 2007;131(6):1164-1178. DOI: 10.1016/j. cell.2007.10.036

Hong S, Dissing-Olesen L, Stevens B. New insights on the role of microglia in synaptic pruning in health and disease. Curr Opin Neurobiol 2016;36:128-134. DOI: 10.1016/j.conb.2015.12.004

Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW, Huang H-Y, et al. Progranulin Deficiency Promotes Circuit-Specific Synaptic Pruning by Microglia via Complement Activation. Cell 2016;165(4):921-935. DOI: 10.1016/j.cell.2016.04.001

Marín-Teva JL, Cuadros MA, Martín-Oliva D, Navascués J. Microglia and neuronal cell death. Neuron Glia Biol 2011;7(01):25-40. DOI: 10.1017/S1740925X12000014

Brown GC, Neher JJ. Microglial phagocytosis of live neurons. Nat Rev Neurosci. 2014;15(4):209. DOI: 10.1038/ nrn3710

Frade JM, Barde Y-A. Microglia-derived nerve growth factor causes cell death in the developing retina. Neuron 1998;20(1):35-41. DOI: 10.1016/S0896-6273(00)80432-8

Marın-Teva JL, Dusart I, Colin C, Gervais A, Van Rooijen N, Mallat M. Microglia promote the death of developing Purkinje cells. Neuron 2004;41(4):535-547. DOI: 10.1016/S0896-6273(04)00069-8

Sedel F. Macrophage-Derived Tumor Necrosis Factor , an Early Developmental Signal for Motoneuron Death. J Neurosci. 2004;24(9):2236-2246. DOI: 10.1523/JNEUROSCI.4464-03.2004

Wakselman S, Bechade C, Roumier A, Bernard D, Triller A, Bessis A. Developmental Neuronal Death in Hippocampus Requires the Microglial CD11b Integrin and DAP12 Immunoreceptor. J Neurosci 2008;28(32):8138- 8143. DOI: 10.1523/JNEUROSCI.1006-08.2008

Zhao C, Deng W, Gage FH. Mechanisms and Functional Implications of Adult Neurogenesis. Cell 2008;132(4):645-660. DOI: 10.1016/j.cell.2008.01.033

Akers KG, Martinez-Canabal A, Restivo L, Yiu AP, De Cristofaro A, Hsiang H-L, et al. Hippocampal Neurogenesis Regulates Forgetting During Adulthood and Infancy. Science. 2014;344(6184):598-602. DOI: 10.1126/science.1248903

Bliss TVP, Collingridge GL, Morris RGM. Synaptic plasticity in health and disease: introduction and overview. Philos Trans R Soc B Biol Sci 2013;369(1633):20130129- 20130129. DOI: 10.1098/rstb.2013.0129

Sierra A, Encinas JM, Deudero JJP, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, et al. Microglia Shape Adult Hippocampal Neurogenesis through Apoptosis-Coupled Phagocytosis. Cell Stem Cell 2010;7(4):483- 495. DOI: 10.1016/j.stem.2010.08.014

Bachstetter AD, Morganti JM, Jernberg J, Schlunk A, Mitchell SH, Brewster KW, et al. Fractalkine and CX3CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol Aging 2011;32(11):2030-2044. DOI: 10.1016/j.neurobiolaging.2009.11.022

Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM, Grimmig BA, et al. CX3CR1 Deficiency Leads to Impairment of Hippocampal Cognitive Function and Synaptic Plasticity. J Neurosci 2011;31(45):16241-16250. DOI: 10.1523/JNEUROSCI.3667-11.2011

Tremblay M-E, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A. The Role of Microglia in the Healthy Brain. J Neurosci 2011;31(45):16064-16069. DOI: 10.1523/JNEUROSCI.4158-11.2011

Gemma C, Bachstetter AD. The role of microglia in adult hippocampal neurogenesis. Front Cell Neurosci 2013;7:229. DOI: 10.3389/fncel.2013.00229

Koeglsperger T, Li S, Brenneis C, Saulnier JL, Mayo L, Carrier Y, et al. Impaired glutamate recycling and GluN2B-mediated neuronal calcium overload in mice lacking TGF-β1 in the CNS: Tgf-β1 and hippocampal glutamate homeostasis. Glia 2013;61(6):985-1002. DOI: 10.1002/glia.22490

Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR, Lafaille JJ, et al. Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor. Cell. 2013;155(7):1596-609. DOI: 10.1016/j. cell.2013.11.030

Schafer DP, Lehrman EK, Stevens B. The `quad-partite` synapse: Microglia-synapse interactions in the developing and mature CNS. Glia 2013;61(1):24-36. DOI: 10.1002/ glia.22389

Sipe GO, Lowery, RL, Tremblay M-è, Kelly EA, Lamantia CE, Majewska AK. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat Commun 2016;7:10905. DOI: 10.1038/ncomms10905

George J, Cunha RA, Mulle C, Amédée T. Microglia-derived purines modulate mossy fibre synaptic transmission and plasticity through P2X 4 and A 1 receptors. Maccaferri G, editor. Eur J Neurosci 2016;43(10):1366-1378. DOI: 10.1111/ejn.13191

Squarzoni P, Oller G, Hoeffel G, Pont-Lezica L, Rostaing P, Low D, et al. Microglia Modulate Wiring of the Embryonic Forebrain. Cell Rep 2014;8(5):1271-1279. DOI: 10.1016/j.celrep.2014.07.042

Penzes P, Cahill ME, Jones KA, VanLeeuwen J-E, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 2011;14(3):285-293. DOI: 10.1038/nn.2741

Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2005;57(1):67-81. DOI: 10.1002/ana.20315

Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J, et al. Microglial Activation and Increased Microglial Density Observed in the Dorsolateral Prefrontal Cortex in Autism. Biol Psychiatry 2010;68(4):368-376. DOI: 10.1016/j.biopsych.2010.05.024

Tetreault NA, Hakeem AY, Jiang S, Williams BA, Allman E, Wold BJ, et al. Microglia in the Cerebral Cortex in Autism. J Autism Dev Disord 2012;42(12):2569-2584. DOI: 10.1007/s10803-012-1513-0

Colonna M, Butovsky O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu Rev Immunol 2017;35(1):441-468. DOI: 10.1146/annurev-immunol-051116-052358

Sierra A, Gottfried-Blackmore AC, McEwen BS, Bulloch K. Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 2007;55(4):412-424. DOI: 10.1002/glia.20468

Daneman R. The blood-brain barrier in health and disease. Ann Neurol 2012;72(5):648-672. DOI: 10.1002/ ana.23648

Polfliet MMJ, Zwijnenburg PJG, van Furth AM, van der Poll T, Dopp EA, Renardel de Lavalette C, et al. Meningeal and Perivascular Macrophages of the Central Nervous System Play a Protective Role During Bacterial Meningitis. J Immunol 2001;167(8):4644-4650. DOI: 10.1128/CMR.17.4.942-964.2004

Yamamoto S, Muramatsu M, Azuma E, Ikutani M, Nagai Y, Sagara H, et al. A subset of cerebrovascular pericytes originates from mature macrophages in the very early phase of vascular development in CNS. Sci Rep 2017;7(1):3855. DOI: 10.1038/s41598-017-03994-1

Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015;523(7560):337-341. DOI: 10.1038/nature14432

Kivisäkk P, Imitola J, Rasmussen S, Elyaman W, Zhu B, Ransohoff RM, et al. Localizing central nervous system immune surveillance: Meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann Neurol 2009;65(4):457-469. DOI: 10.1002/ana.21379

Kaur C, Ling E-A. The circumventricular organs. Histol Histopathol 2017;32(9):879-892. DOI: 10.14670/HH- 11-881

Bill BR, Korzh V. Choroid plexus in developmental and evolutionary perspective. Front Neurosci 2014;8. DOI: 10.3389/fnins.2014.00363




DOI: http://dx.doi.org/10.14748/bmr.v29.5855

Refbacks

Article Tools
Email this article (Login required)
About The Authors

Marin Zhelezov
Medical University of Varna
Bulgaria

Department of Anatomy and Cell Biology

Anton B. Tonchev
Medical University of Varna
Bulgaria

Department of Anatomy and Cell Biology

Font Size


|