Scientific Online Resource System

International Bulletin of Otorhinolaryngology

The pericyte progenitors and the pericytes are the ancestors of the inner ear structures

Michail S. Davidoff

Abstract

This short scientific overview concerns the morpho-functional comparison between the omnipresent pericytes and the pericytes of the inner ear and, besides some characteristic features of the last, provides evidence that the otic pericytes are authentic part of the omnipresent pericyte (adult stem cell) population of the vertebrate organism. In the present review we offer evidences for a new hypothesis that the pericyte progenitors and the pericytes, as pluripotent epiblast derivatives, are the ancestors of the supporting and hair cells of the Corti organ, the cells of the vestibular (balance) organ and the neural elements of the inner ear in norm and experiment. The most important evidences for this statement provide results concerning: 1. the origin of the inner ear vasculature; 2. the close relationships of the pericytes with the microvasculature of the inner ear (periendothelial location in microvascular niches); 3.their importance for the blood-labyrinth barrier; 4. the events that accompany the origin of the inner ear sensory epithelia; 5. the authentic stem cell qualities of the pericytes allowing the production of cells and tissues characteristic for the
three embryonal germ layers: ectoderm, mesoderm and endoderm (during embryogenesis, in the adult organisms and at experimental and pathological conditions), as well as 6. the remarkable pericyte plasticity and their involvement in the immune system.

Keywords

Pericytes, inner ear, cochlea, Corti organ, adult stem cells

Full Text


References

Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology 2005; 7(4):452–464. doi: 10.1215/S1152851705000232

Shi X. Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hear Res 2016; 338: 52–63. doi: 10.1016/

j.heares.2016.01.010

Hirschi KK, D’Amore PA. Pericytes in the microvasculature. Cardiovasc Res 1996; 32(4): 687-698. doi: 10.1016/S0008-6363(96)00063-6

Davidoff MS, Middendorff R, Enikolopov G, Rietmacher D, Holstein AF, Müller D. Progenitor cerlls of the testosterone-producing Leydig cells revealed. J Cell Biol 2004; 167: 935-944. doi:10.1083/jcb.2004091

Davidoff MS, Middendorff R, Müller D, Holstein AF. The neuroendocrine Leydig cells and their stem cell progenitors, the pericytes. Advances in Anatomy, Embryology and Cell Biology, Springer 2009; 205: 1-154. doi: 10.1007/978-3-642-00513-8

Friedrich R, Holstein AF, Middendorff R, Davidoff MS. Vascular wall cells contribute to tumourigenesis in cutaneous neurofibromas of patients with neurofibromatosis type 1. A comparative histological, ultrastructural and immunohistochemical study. Anticancer Res 2012; 32(5): 2139-2158

Kloc M, Kubiak JZ, Li XC, Ghobrial RM. Pericytes, microvascular dysfunction, and chronic rejection. Transplantation 2015; 99(4): 658-667. doi: 10.1097/TP.0000000000000648

Davidoff MS. The Leydig cells of the testis originate from the microvascular pericytes. Biomedical Reviews 2017; 28: 5-25. doi: 10.14748/bmr.v28.4448

Davidoff MS. The pluripotent microvascular pericytes are the adult stem cells even in the testis. In: A Birbarir (ed), Capter 13, Pericyte Biology in Different Organs, Springer Nature Switzerland AG, Adv Exp Med Biol 2019; 1122: 235-268. doi: 10.1007/978-3-030-11093-2_13

Gerhardt H, Betsholtz C. Endothelial–pericyte interactions in angiogenesis. Cell Tissue Res 2003; 314 (1):15–23. doi: 10.1007/s00441-003-0745-x

Diaz-Flores L, Gutiérrez R, Madrid JF. et al. Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 2009; 24(7): 909- 969. doi: 10.14670/HH-24.909

Crisan M, Yap S, Casteilla L. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008; 3(3):301–313. doi: 10.1016/J.Stem.2008.07.003

Crisan M, Corselli M, Chen C-W, Péault B. Multilineage stem cells in the adult. A perivascular legacy? Organogenesis 2011; 7(2): 101-104. doi: 10.4161/org.7.2.16150

Bouacida A, Rosset P, Trichet V. et al. Pericyte-like progenitors show high immaturity and engraftment potential as compared with mesenchymal stem cells. PLoS ONE 2012; 7(11): e486548. doi: 10.137/journal.pone.0048648

Stapor PC, Sweat RS, Dashti DC, Betancourt AM, Murfee WL. Pericyte dynamics during angiogenesis: new insights from new identities. J Vasc Res 2014; 51(3): 163–174. doi:10.1159/000362276

Chen J, Luo Y, Hui H. et al. CD146 coordinates brain endothelial cell – pericyte communication for Blood – brain barrier development. Proc Natl Acad Sci USA 2017; 114(36): E7622–E7631. doi: 10.1073/pnas.1710848114

Guimarães-Camboa N, Cattaneo P, Sun Y. et al. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 2017; 20(3): 345–359. doi: 10.1016/j.stem.2016.12.006

Cano E, Gebala V, Gerhardt H. Pericytes or mesenchy¬mal stem cells: Is that the question? Cell Stem Cell 2017; 20(3): 296-297. doi:10.1016/j.stem.2017.02.005

Montiel-Eulefi E, Sánchez R, Rojas M, Bustos-Obregon E. Epiblast embryo stem cells give origin to adult pluripotent cell populations:primordial germ cell, pericytic and haematopoietic stem cells. A review. Int J Morphol 2009; 27(4): 1325-1333. doi: 10.4067/S0717-95022009000400056.

Montiel-Eulefi E, Nery AA, Rodrigues LC, Sánchez R, Romero F, Ulrich H. Neural differentiation of rat aorta pericyte cells. Cytometry 2012; Part A 81A: 65-71. doi:10.1002/cyto.a.21152

Péault B, Rudnicki M, Torrente Y. et al. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther 2007;15(5): 867- 877. doi: 10.1038/mt.sj.6300145

Rossant J. Stem cells from the mammalian blastocyst. Stem Cells 2001; 19(6): 477-482. doi: 10.1634/stemcells.19-6-477

Suwinska A, Ciemerych MA. Factors regulating pluripotency and differentiation in early mammalian embryos and embryo-derived stem cells. In: Gerald Litwack (Ed) Stem Cell Regulators, Vitam Horm 2011; 87: 1-37. doi: 10.1016/B978-0-12-386015-6.00022-6

Bianco P, Robey PG. Skeletal stem cells. Development 2015; 142(6): 1023-1027. doi: 10.1242/dev.102210.

Caplan AI. All MSCs are pericytes? Cell Stem Cell 2008; 3(3):229-230. doi: 10.1016/J.Stem.2008.08.008

Zouani OF, Lei Y, Durrieu M-C. Pericytes, stem-cell-like cells, but not mesenchymal stem cells are recruited to support microvascular tube stabilization. Small 2013; 9(18): 3070-3075. doi: 10.1002/smll.201300124

Shi X. Physiopathology of the cochlear microcirculation. Hear Res 2011; 282(1-2): 10–24. doi:10.1016/j.heares.2011.08.006.

Hornstrand C, Axelsson A, Vertes D. The vascular anatomy of the rat cochlea, Acta Oto-Laryngologica 1980; 89(1-2): 1-11, doi: 10.3109/00016488009127102

Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol 1995; 11: 73-91. doi: 10.1146/annurev.cb.11.110195.000445

Flamme I, Frölich T, Risau W. Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol 1997; 173(2): 206-210. doi: 10.1002/(SICI)1097-4652(199711)173:2<206::AID-JCP22>3.0.CO;2- C

Udan RS, Culver JC, Dickinson ME. Understanding vascular development: Wiley Interdiscip Rev Dev Biol 2013; 2(3): 327–346. doi:10.1002/wdev.91

Drake CJ, Fleming PA. Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood 2000; 95(5): 1671-1679.

Mitrani E, Gruenbaum Y, Shohat H, Ziv T. Fibroblast growth factor during mesoderm induction in the early chick embryo. Development 1990; 109(2): 387–393

Dyer LA, Patterson C. Development of the endothelium: An emphasis on heterogeneity. Semin Thromb Hemost 2010; 36(3): 227–235. doi:10.1055/s-0030-1253446

Risau W. Mechanisms of angiogenesis. Nature 1997; 386(6626): 671-674. doi: 10.1038/386671a0

Carmeliet P. Angiogenesis in life, disease and medicine. Nature 2005; 438(7070): 932–936. doi: 10.1038/nature04478

Godin I, Dieterlen-Lièvre F, Cumano A. Emergence of multipotent hemopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryos, beginning at 8.5 days postcoitus. Proc Natl Acad Sci USA 1995; 92(3): 773-777. doi: 10.1073/pnas.92.3.773

Goldie LC, Nix MK, Hirschi KK. Embryonic vasculogenesis and hematopoietic specification. Organogenesis 2008; 4(4): 257–263. doi: 10.4161/org.4.4.7416

De-Miguel MP, Arnalich Montiel F, Lopez Iglesias P, Blazquez Martinez A Nistal M. Epiblast-derived stem cells in embryonic and adult tissues. Int J Dev Biol. 2009; 53(8-10):1529-1540. doi: 10.1387/ijdb.072413md.

De-Miguel MP, Fuentis-Julian S, Alcaina Y. Pluripotent stem cells: origin, maintenance and induction. Stem Cell Rev and Rep 2010; 6(4): 633-6409. doi: 10.1007/s12015-010-9170-1.

Taylor E, Taodi S, Medvinsky A. Hematopoietic stem cell activity in the aorta-gonad-mesonephros region enhances after mid-day 11 of mouse development. Int J Dev Biol 2010; 54(6-7): 1055-1060. doi: 10.1387/ijdb.103152et

Arora R, Papaioannou VE. The murine allantois: a model system for thestudy of blood vessel formation. Blood 2012; 120(13): 2562-2572. doi: 10.1182/ blood-2012-03-390070

Cho H , Kozasa T , Bondjers C , Betsholtz C , Kehrl JH. Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation . FASEB J 2003; 17(5): 440-442. doi: 10.1096/fj.02- 0340fje

Mei X, Atturo F, Wadin K. et al. Human inner ear blood supply revisited: the Uppsala collection of temporal bone—an international resource of education and collaboration. Upsala J Med Sci 2018; 123(3): 131–142. doi: 0.1080/03009734.2018.1492654

Shi X, Han W, Yamamoto H. The cochlear pericytes. Microcirculation 2008; 15(6): 515-529. doi: 10.1080/10739680802047445

Shi X. Cochlear pericyte responses to acoustic trauma and the involvement of hypoxia-inducible factor-1α and vascular endothelial growth factor. Am J Pathol 2009; 174(5): 1692-1704. doi: 10.2353/ajpath.2009.080739

Chen W, Jongkamonwiwat N, Abbas L. et al. Restoration of auditory evoked responses by human ES cell-derived otic progenitors. Nature 2012; 490(7419): 278–282. doi:10.1038/nature11415

Jiang H, Wang X, Zhang J, Kachelmeier A, Lopez IA, Shi X. Microvascular networks in the area of the auditory peripheral nervoussystem. Hearing Research 2019; 371: 105-116. doi: 10.1016/j.heares.2018.11.012

Dai M, Shi X. Fibro-vascular coupling in the control of cochlear blood flow. PLoS ONE 2011; 6(6): e20652. doi:10.1371/journal. pone.0020652

Canis M, Bertlich M. Cochlear Capillary Pericytes, Chapter 7, A. Birbrair (ed.) Pericyte Biology in Different Organs, Advances in Experimental Medicine and Biology 1122, Springer Nature Switzerland AG 2019; doi: 10.1007/978-3-030-11093-2_7, pp 115-123

Oshima K, Grimm CM, Corrales CE. et al. Differential distribution of stem cells in the auditory and vestibular organs of the inner ear. JARO 2007; 8(1): 18–31. doi: 10.1007/s10162-006-0058-3

Axelsson A. Comparative anatomy of cochlear blood vessels. Am J Otolaryngol 1988; 9(6):278-290. doi; 10.1016/S0196-0709(88)80036-X

Montiel-Eulefi E, Sánchez R, Rojas M, Bustos-Obregon E. Epiblast embryo stem cells give origin to adult pluripotent cell populations: primordial germ cell, pericytic and haematopoietic stem cells. A review. Int J Morphol 2009; 27(4): 1325-1333. Doi: 10.4067/S0717-95022009000400056.

Carmeliet P. Blood vessels and nerves: common signals, pathways and diseases. Nature Reviews 2003; 4(7048): 710-720. doi: 10.1038/nature03875

Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nature Neurosci 2016; 19 (6): 16 771-16 783. doi:10.1038/nn.4288

Cai W, Liu H, Zhao J. et al. Pericytes in brain Injury and repair after ischemic stroke. Transl Stroke Res 2017; 8(2):107–121. doi: 10.1007/s12975-016-0504-4

Stebbins MJ, Gastfriend BD, Canfield SG. et al. Human pluripotent stem cell–derived brain pericyte–like cells induce blood-brain barrier properties. Science Advances 2019; 5(3): eaau7375. doi: 10.1126/sciadv.aau7375

Dore-Duffy P. Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des 2008; 14(16): 1581-1593. doi: 10.2174/138161208784705469

Sá-Pereira I, Brites D, Brito MA Neurovascular unit: a focus on pericytes. Mol Neurobiol 2012; 45(2): 327-347. doi: 10.1007/s12035-012-8244-2

Zhang F, Dai M, Neng L. Perivascular macrophage-like melanocyte responsiveness to acoustic trauma—a salient feature of strial barrier associated hearing loss. FASEB J 2013; 27(9):3730–3740. doi:10.1096/fj.13- 232892

Alvarez-Buylla A, Seri B, Doetsch F (2002) Identification of neural stem cells in the adult vertebrate brain. Brain Res Bull 57(6): 751-758. doi: 10.1016/S0361-9230(01)00770-5

Sild M, Rithazer ES (2011) Radial glía: progenitor, pathway, and partner. Neurosci 17(3) 288-302. doi: 10.1177/1073858410385870

Wei LC, Shi M, Chen LW, Cao R, Zhang P, Chan YS. Nestin-containing cells express glial fibrillary acidic protein in the proliferative regions of central nervous system of postnatal developing and adult mice. Brain Res Dev Brain Res 2002; 139(1): 9-17. doi: 10.1016/s0165-3806(02)00509-6

Zhu X, Bergles DE, Nishiyama A. NG2 cells generate both oligodendrogcytes and gray matter astrocytes. Development 2008; 135(1): 145-157. doi: 10.1242/dev.004895

Zhelezov M, Tonchev AB. Microglia are not brain macrophages? Biomedical Reviews 2018; 29: 99-108

Fröhlich E. Aufbau und Funktion von Blut-Gewebe-Schranken (Structure and function of blood-tissue barriers). Dtsch med Wochenschr 2002; 127(49): 2629-2634. doi: 10.1055/s-2002-35932

Caceres PS, Benedicto I, Lehmann GL. Rodriguez-Boulan EJ. Directional fluid transport across organ–blood barriers: physiology and cell biology. Cold Spring Harb Perspect Biol 2017; 9(3): a027847. doi: 10.1101/cshperspect.a027847

Suko T, Ichimiya I, Yoshida K, Suzuki M, Mogi G. Classification and culture of spiral ligament fibrocytes from mice. Hearing Research 2000; 140(1-2): 137-144. doi: 10.1016/S0378-5955(99)00191-4

He H, Mack JJ, Güҫ E. et al. Perivascular macrophages limit permeability. Arterioscler Thromb Vasc Biol 2016; 36(11): 2203-2212. doi:10.1161/ATVBAHA.116.307592

Bramhall NF, Shi F, Arnold K, Hochedlinger K, Edge ASB. Lgr5- positive supporting cells generate new hair cells in the postnatal cochlea. Stem Cell Reports 2014; 2(3): 311–322. doi: 10.1016/j.stemcr.2014.01.008

Streit A. Early development of the cranial sensory nervous system: from a common field to individual placodes. Dev Biol 2004; 276(1):1– 15. doi: 10.1016/j.ydbio.2004.08.037

Schlosser G. Induction and specification of cranial placodes. Dev Biol 2006; 294(2): 303–351. doi:10.1016/j.ydbio.2006.03.009

Ladher RK, O’Neill P, Begbie J. From shared lineage to distinct functions: the development of the inner ear and epibranchial placodes. Development 2010; 137(11): 1777-1785. doi:10.1242/dev.040055

Maharana SK, Schlosser G. A gene regulatory network underlying the formation of pre-placodal ectoderm in Xenopus laevis. BMC Biology 2018; 16(1):79. doi: 10.1186/s12915-0 18-0540-5

Trevers KE, Prajapati RS, Hintze M. et al. Neural induction by the node and placode induction by head mesoderm share an initial state resembling neural plate border and ES cells. Proc Natl Acad Sci USA 2018; 115(2): 355–360. doi:10.1073/pnas.1719674115

Chen J, Streit A. Induction of the inner ear: stepwise specification of otic fate from multipotent progenitors. Hear Res 2013; 297: 3–12. doi:10.1016/j.heares.2012.11.018

Jacobson AG. Inductive processes in embryonic development. Science 1966; 125(3718): 25– 34. doi: 10.1126/science.152.3718.25

Streit A. Early development of the cranial sensory nervous system: from a common field to individual placodes. Dev Biol 2004; 276(1):1– 15. doi: 10.1016/j.ydbio.2004.08.037

Grocott T, Tambalo M, Streit A. The peripheral sensory nervous system in the vertebrate head: A gene regulatory perspective. Dev Biol 2012;370(1): 3–23. doi: 10.1016/j.ydbio.2012.06.028

Streit A, Berliner AJ, Papanayotou C, Sirulnik A, Stern CD (2000) Initiation of neural induction by FGF signalling before gastrulation. Nature 2000; 406(6791): 74-78. doi: 10.1038/35017617

Barembaum M, Bronner-Fraser M. Spalt4 mediates invagination and otic placode gene expression in cranial ectoderm. Development 2007; 134(21): 3805-3814. doi:10.1242/dev.02885

Kalatzis V, Sahly I, El-Amraoui A, Petit C. Eya1 expression in the developing ear and kidney: towards the understanding of the pathogenesis of Branchio-Oto-Renal (BOR) syndrome. Dev Dyn 1998; 213(4):486-499. doi: 10.1002/(SICI)1097-0177(199812)213:4<486::AIDAJA13>3.0.CO;2-L

Xu PX, Adams J, Peters H. et al. Eya1- deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat. Genet.1999; 23(1): 113-117. doi: 10.1038/12722

Xu J, Ueno H, Xu CY. Et al. Identification of mouse cochlear progenitors that develop hair and supporting cells in the organ of Corti. Nature Comm 2017; 8:15046 . doi: 10.1038/ncomms15046

Ahmed M, Xu J, Xu PX. EYA1 and SIX1 drive the neuronal developmental program in cooperation with the SWI/SNF chromatin-remodeling complex and SOX2 in the mammalian inner ear. Development 2012; 139(11): 1965-1977. doi: 10.1242/dev.071670

Fritzsch B, Pan N, Jahan I, Elliott KL. Inner ear development: building a spiral ganglion and an organ of Corti out of unspecified ectoderm. Cell Tissue Res 2015; 361(1): 7-24. doi: 10.1007/s00441-014-2031-5.

Hoijman E, Fargas L, Blader P, Alsina B. Pioneer Neurog1 expressing cells ingress into the otic epithelium and instruct neuronal specification. eLife 2017; 6: e25543. doi: 10.7554/eLife.25543

Pechriggl EJ, Bitsche M, Glueckert R. et al. Development of the innervation of the human inner ear. Dev Neurobiol 2015; 75(7): 683-702. doi: 10.1002/dneu.22242.

Taniguchi M, Yamamoto N, Nakagawa T, Ogino E, Ito J. Identification of tympanic border cells as slow-cycling cells in the cochlea. PLoS One 2012; 7(10): e48544. doi: 10.1371/journal.pone.0048544#

de Celis JF, Barrio R. Regulation and function of Spalt proteins during animal development. Int J Dev Biol 2009; 53(8-10):1385-1398. doi:10.1387/ijdb.072408jd

Oshima K, Shin K, Diensthuber M, Peng AW, Ricci AJ, Heller S. Mechanosensitive hair cell-like cells from embryonic and induced pluripotent stem cells. Cell 2010; 141(4): 704–716. doi:10.1016/j.cell.2010.03.035.

Koehler KR, Mikosz AM, Molosh AI, Patel D, Hashino E. Generation of Inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 2013; 500(7461): 217–221. doi: 10.1038/nature12298

Jeong M, O’Reilly M, Kirkwood NK. et al. Generating inner ear organoids containing putative cochlear hair cells from human pluripotent stem cells. Cell Death Disease 2018; 9 (9): 922. doi: 10.1038/s41419-018-0967-1

Corwin JT. Postembryonic production and aging of inner ear hair cells in sharks. J Compar Neurol 1981; 201(4): 541-553. doi:10.1002/cne.902010406

Corwin JT. Regeneration in the auditory system. Exp Neurol 1992; 115(1): 7-12. doi: 10.1016/0014-4886(92)90212-9

Corwin JT, Cotanche DA. Regeneration of sensory hair cells after acoustic trauma. Science 1988; 240(4860): 1772-1774. doi: 10.1126/science. 3381100

Girod DA, Duckert LG, Rubel EW. Possible precursors of regenerated hair cells in the avian cochlea following acoustic trauma. Hear Res 1989; 42: 175-194

da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells 2008; 26(9): 2287-2299. doi: 10.1634/stemcells.2007-1122

da Silva Meirelles L, Caplan A I, Nardi NB. Pericytes as the source of mesenchymal stem cells. Chapter 12. In: Resident Stem Cells and Regenerative Therapy. Elsevier Inc. 2013: 233-250. doi: 10.1016/B978-0-12-416012- 5.00012-8

Iwagaki T, Suzuki T, Nakashima T. Development and regression of cochlear blood vessels in fetal and newborn mice. Hearing Research 2000; 145(1- 2): 75-81. doi: 10.1016/S0378-5955(00)00075-7

Hou Z, Wang X, Cai J. et al. Platelet- derived growth factor subunit B signaling promotes pericyte migration in response to loud sound in the cochlear stria vascularis. J Assoc Res Otolaryngol 2018; 19(4):363-379. doi: 10.1007/s10162-018-0670-z.

Yamasoba T, Kondo K. Supporting cell proliferation after hair cell injury in mature guinea pig cochlea in vivo. Cell Tissue Res 2006; 325(1): 23–31. Doi: 10.1007/s00441-006-0157-9

Malgrange B, Thiry M, Van de Water TR, Nguyen L, Moonen G, Lefebvre PP. Epithelial supporting cells can differentiate into outer hair cells and Deiters’ cells in the cultured organ of Corti. Cell Mol Life Sci 2002; 59(10); 1744-1757. doi: 10.1007/PL00012502

Wan G, Corfas G, Stone JS. Inner ear supporting cells: Rethinking the silent majority. Semin Cell Dev Biol 2013; 24(5): 448–459. doi:10.1016/j.semcdb.2013.03.009.

Nakata M, Nakagomi T, Maeda M, Nakano-Doi A, Momota Y, Matsuyama T. Induction of perivascular neural stem cells and possible contribution to neurogenesis tollowing transient brain ischemia/reperfusion injury. Translational stroke research. 2017; 8(2): 131-143. doi:10.1007/s12975-016- 0479-1.

Lefebvre PP, Malgrange B, Staecker H, Moonen G, Van de Water TR. Retinoic acid stimulates regeneration of mammalian auditory hair cells. Science 1993; 260(5108): 692-695. doi: 10.1126/science.8480180

McGovern MM, Zhou L, Randle MR, Cox BC. Spontaneous hair cell regeneration is prevented by increased Notch signaling in supporting cells. Front Cell Neurosci 2018; 12:120. doi: 10.3389/fncel.2018.00120

Youm I, Li W. Cochlear hair cell regeneration: an emerging opportunity to cure noise-induced sensorineural hearing loss. Drug Discov Today 2018; 23(8):1564-1569. doi: 10.1016/j.drudis.2018.05.001.

Lanford PJ, Lan Y, Jiang R. et al. Notch signalling pathway mediates hair cell development in mammalian cochlea. Nature Genet 1999; 21(3): 289–292. doi: 10.1038/6804

Wu DK, Kelley MW (2012) Molecular mechanisms of inner ear development. Cold Spring Harb Perspect Biol 4(8): a008409. doi: 10.1101/cshperspect.a008409

Rubbini D, Robert-Moreno A, Hoijman E, Alsina B. Retinoic acid signaling mediates hair cell regeneration by repressing p27kip and Sox2 in supporting cells. J Neurosc 2015; 35 (47):15752-15766. doi: 10.1523/JNEUROSCI. 1099.2015.

Franco B, Malgrange B. Concise review: Regeneration in mammalian cochlea hair cells: Help from supporting cells transdifferentiation. Stem Cells 2017; 35(3):551–556. doi: 10.1002/stem.2554

Kälin R, Li Y, Linzhi C. et al. CBMT-40. A SOX2-expressing pericyte precursor constitutes a new and efficient target for anti-angiogenesis in gliomas. Neuro-Oncology 2018; 20 (suppl_6): vi41. doi: 10.1093/neuonc/noy148.159

Abelló G, Khatri S, Radosevic M, Scotting PJ, Giráldez F, Alsina B. Independent regulation of Sox3 and Lmx1b by FGF and BMP signaling influences the neurogenic and non-neurogenic domains in the chick otic placode. Devel Biol 2010; 339(1): 166–178. doi:10.1016/j.ydbio.2009.12.027I

Waqas M, Gao S, Iram-us-Salam, Ali MK, Ma Y, Li W. Inner ear hair cell protection in mammals against the noise-induced cochlear damage. Neural Plasticity 2018; 2018: 3170801. doi:10.1155/2018/3170801

Hu N, Rutherford MA, Green SH. Protection of cochlear synapses from noise-induced excitotoxic trauma by blockade of Ca2+-permeable AMPA receptors. Proc Natl Acad Sci USA 2020; 117(7): 3828–3838. doi/10.1073/pnas.1914247117

Liu JA, Tai A, Hong J. et al. Fbxo9 functions downstream of Sox10 to determine neuron-glial fate choice in the dorsal root ganglia through Neurog2 destabilization. Proc Natl Acad Sci USA 2020; 117(8): 4199-4210. doi: 10.1073/pnas.1916164117

Levic S, Nie L, Tuteja D, Harvey M, Sokolowski BHA, Yamoah EN. Development and regeneration of hair cells share common functional features. Proc Natl Acad Sci USA 2007; 104(48): 9108–19113. doi: 10.1073_pnas.0705927104

Defourny J, Sánchez SM, Schoonaert L. et al. Cochlear supporting cell transdifferentiation and integration into hair cell layers by inhibition of ephrin-B2 signalling. Nature Commun 2015; 6:7017. doi: 10.1038/ncomms8017

Reichert S, Randall RA, Hill CS. A BMP regulatory network controls ectodermal cell fate decisions at the neural plate border. Development 2013; 140(21): 4435–4444. doi: 10.1242/dev.098707

Saint-Jeannet J-P, Moody SA. Establishing the pre-placodal region and breaking it into placodes with distinct identities. Dev Biol 2014; 389(1): 13–27. doi:10.1016/j.ydbio.2014.02.011.

Schille C, Schambony A. Signaling pathways and tissue interactions in neural plate border formation. NEUROGENESIS 2017; 4(1):e1292783 (12 pages). doi: 10.1080/23262133.2017.1292783

Bronner ME and Simões-Costa M. The neural crest migrating into the 21st century. Curr Top Dev Biol 2016; 116: 115–134 doi:10.1016/bs.ctdb.2015.12.003

Baker SG. The detached pericyte hypothesis: A novel explanation for many puzzling aspects of tumorigenesis. Organisms J Biol Sci 2018; 2(1): 25- 41. DOI: 10.13133/2532-5876_3.10.

Gnedeva K, Wang X, McGovern MM, Barton M, Tao L, Trecek T, Tanner O. Monroe TO, Llamas J, Makmura W, Martin JF, Groves AK, Warchol M, Segil N. Organ of Corti size is governed by Yap/Tead-mediated progenitor self-renewal. Proc Natl Acad Sci USA 2020; 117 (24): 13552-13561. doi:10.1073/pnas.2000175117




DOI: http://dx.doi.org/10.14748/orl.v16i2.6738

Refbacks

Font Size


|