PYOGENIC LIVER ABSCESS - ETIOLOGICAL SPECTRUM AND ANTIMICROBIAL SUSCEPTIBILITY

Atanas Lisnichkov¹, Milena Bozhkova², Temenuga Stoeva², Vassil Bozhkov¹, Ilko Plachkov¹, Plamen Chernopolsky¹, Todor Ivanov¹, Gergana Nedelcheva², Victoria Snegarova², Dobromira Dimitrova², Rossen Madjov¹

¹Second Clinic of Surgery, Department of Surgery, St. Marina University Hospital of Varna, ²Laboratory of Microbiology, St. Marina University Hospital of Varna, Department of Microbiology and Virology, Medical University of Varna

ABSTRACT

INTRODUCTION: Pyogenic liver abscess (PLA) is a serious challenge in modern medical practice. The aim of this study was to investigate the etiology and antimicrobial susceptibility of PLA-associated microbial pathogens, diagnosed in hospitalized patients at St. Marina University Hospital of Varna during the period between 2001 and 2016.

MATERIALS AND METHODS: A total of 84 clinical samples (pus aspirates, n=72, bile samples, n=7, and blood cultures, n=5), collected from PLA patients, hospitalized in the Second Surgery Clinic were analyzed. Species identification was performed by conventional methods. Antimicrobial susceptibility was studied by disk diffusion method and Phoenix 100 (BD). The results were interpreted according to CLSI and EUCAST standards.

RESULTS: Causative bacterial agents belonging to 15 different species were isolated in 59 cases (in 70%). E. coli (23.7%), K. pneumoniae (20%), E. cloacae (13.5%), E. faecalis (8.5%), P. mirabilis (5%) and P. aeruginosa (5%) dominated in the etiological spectrum. E. coli demonstrated the following levels of antimicrobial susceptibility: imipenem, amikacin, piperacillin/tazobactam, 100%; ceftazidime, cefepime, 90.9%; cefuroxime, 83.3%; amoxicillin/clavulanic acid, 77.8%; gentamicin, 75%; levofloxacin, cefalothin, 66.6%; ciprofloxacin, 63.6%; piperacillin, 58.3%; ampicillin, 45.5%. The following antimicrobial susceptibility rates were determined for K. pneumoniae: imipenem, 100%; amikacin, 92.3%; ceftazidime, cefepime, 80%; cefalothin, cefuroxime, 75%; levofloxacin, gentamicin, 66.6%; ciprofloxacin, 62.5%; piperacillin/tazobactam, 57.1%; piperacillin, 25% and amoxicillin/clavulanic acid, 22.2%.

CONCLUSIONS: E. coli and K. pneumoniae are the predominant pathogens in PLA patients. Carbapenems are the most active antimicrobial agents followed by ceftazidime and cefepime. In the aminoglycoside group, amikacin demonstrates the best in vitro activity. Scr Sci Med. 2017;49(4):53-57

Keywords: pyogenic liver abscess, E. coli, K. pneumoniae, antibacterial agents, resistance

INTRODUCTION

Pyogenic liver abscess (PLA) is associated with inflammatory focus formation in the liver with a subsequent formation of pus-filled cavity. The disease is a serious therapeutic and surgical problem. At the beginning of the last century, pylephlebitis associated with appendicitis is the most common cause of PLA and in 75-80% of the cases, the outcome of this infection is lethal. In the late 20th century to date,
both benign and malignant biliary tract obstructions are the most common cause for liver abscesses. Mortality has now declined significantly and ranges from 10 to 40% (1). To a large extent, this is due to the early diagnosis of the disease, adequate microbiological diagnosis and improved treatment options, including etiological antibacterial therapy.

According to literature data, PLA incidence rate has not changed significantly during the past 50 years - an average of 8 to 16 cases per 100,000 patients, with an autopsy rate ranging from 0.3 to 1.5% (2).

In developed countries, most liver abscesses are bacterial. PLA incidence rate is significantly lower with amoebic, mycotic and necrotic (sterile) etiology. The causative infectious agents can be identified by microbiological analysis of liver punctate, bile and blood cultures. The cultivation of bile and pus samples from the collected liver punctate is usually positive and allows the identification of the etiological agent in a high percentage of the cases, whereas a bacterial growth in the tested blood cultures is detected in 55-60% only (3).

The appropriate use of antibacterial therapy is essential for the successful outcome of the disease. Information about the etiological spectrum and antimicrobial susceptibility of the key organisms responsible for PLA significantly helps the surgeon and is an integral part of the complex approach to resolving this complicated therapeutic problem.

The aim of this study is to present data on the etiological spectrum of bacterial causative agents of PLA in patients hospitalized in the Second Surgery Clinic at St. Marina University Hospital of Varna during the period between 2001 and 2016 as well as their susceptibility to antimicrobial agents.

MATERIALS AND METHODS

During this period, a total of 84 clinical samples collected from PLA patients, hospitalized in the Second Surgery Clinic were examined in the Microbiology Laboratory of St. Marina University Hospital of Varna. The distribution of the tested clinical samples was the following: pus aspirates from liver abscess, n=72, bile samples, n=7, and blood cultures, n=5. Species identification was performed by conventional tests, Crystal and Phoenix 100 Identification Systems (BD). Antimicrobial susceptibility was studied by Kirby-Bauer disk diffusion method and Phoenix 100 (BD). The results were interpreted according to CLSI and EUCAST standards.

RESULTS

Causative bacterial agents were isolated in 59 cases (70%). Twenty-five clinical samples remained sterile. A mixed bacterial infection (involving more than one bacterial species) was identified in four patients. A total of 59 non-duplicate bacterial isolates belonging to 15 different species were isolated. Data regarding PLA etiological spectrum were shown in Table 1.

Table 1. Bacterial species isolated from patients with PLA (in %)

<table>
<thead>
<tr>
<th>Microbial species</th>
<th>Isolates</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram-positive bacteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td></td>
<td>2</td>
<td>3.4</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td></td>
<td>4</td>
<td>6.8</td>
</tr>
<tr>
<td>Staphylococcus haemolyticus</td>
<td></td>
<td>1</td>
<td>1.7</td>
</tr>
<tr>
<td>Streptococcus anginosus</td>
<td></td>
<td>1</td>
<td>1.7</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td></td>
<td>5</td>
<td>8.5</td>
</tr>
<tr>
<td>Gram-negative bacteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td></td>
<td>14</td>
<td>23.7</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td></td>
<td>12</td>
<td>20.3</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td></td>
<td>2</td>
<td>3.4</td>
</tr>
<tr>
<td>Leclerciaadcarboxylata</td>
<td></td>
<td>1</td>
<td>1.7</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td></td>
<td>8</td>
<td>13.6</td>
</tr>
<tr>
<td>Citrobacter freundii</td>
<td></td>
<td>1</td>
<td>1.7</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td></td>
<td>3</td>
<td>5.1</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td></td>
<td>3</td>
<td>5.1</td>
</tr>
<tr>
<td>Pseudomonas putida</td>
<td></td>
<td>1</td>
<td>1.7</td>
</tr>
<tr>
<td>Bacteroides fragilis</td>
<td></td>
<td>1</td>
<td>1.7</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td>59</td>
<td>100.0</td>
</tr>
</tbody>
</table>

The susceptibility of the most frequently isolated species (*E. coli* and *K. pneumoniae*) to a set of 14 antibacterial agents was shown in Fig. 1 and Fig. 2.

DISCUSSION

PLA is a relatively rare, but potentially life-threatening disease. Rapid diagnosis, identification of etiologic agents and the early start of adequate medical and/or surgical treatment are among the most important factors for a therapeutic success.
Fig. 1. Susceptibility of E. coli isolates (n=14) to a set of antimicrobial agents

Fig. 2. Susceptibility of K. pneumoniae isolates (n=12) to a set of antimicrobial agents

Taken into consideration the specificity of pathogenesis of this disease, the leading etiologic agents of PLA are bacteria from the normal gastrointestinal microbial flora. In this aspect, the family Enterobacteriaceae, and particularly E. coli, which is repeatedly documented in a number of studies, has a dominant role (4-7). A retrospective study involving 72 patients with E. coli PLA found out that most often, the etiology of infection is associated with biliary tract pathology (8). These authors reported a relatively high mortality rate, mainly related to underlying malignancies, the presence of multiple abscesses and/or prolonged hypoalbuminemia. The results of our study indicate that E. coli is the most common bacterial pathogen and confirm its leading role in PLA etiology.

In recent years, mainly in the Asian countries, but also in some centers in USA and Europe, a trend of increasing the relative rate of PLA associated with K. pneumoniae was detected (9-11). A retrospective study from China identified K. pneumo-
high proportion of such infections - of 16.2% (4,18). Among the tested clinical samples, we found evidence of mixed infections with the involvement of two or three different bacterial species in four purulent samples collected from PLA patients (7.5%). The presence of more than one bacterial causative agent further complicates the adequate choice of antimicrobial therapy.

Data from the antimicrobial susceptibility testing of the most common bacterial agents of PLA (E. coli and K. pneumoniae) indicate that only carbapenems (imipenem, meropenem) and piperacillin/tazobactam (with respect to E. coli) demonstrate fully preserved in vitro antibacterial activity. The broad spectrum of activity of carbapenems, their excellent anti-anaerobic effect and good tissue penetration define these antibiotics as an excellent choice for treatment, especially in high-risk patients and in the cases of multidrug resistant bacteria, which are often associated with nosocomial infections. To preserve the excellent activity of carbapenems, it is necessary to evaluate the potential risk factors for the patient and to determine the resistance profile of the particular bacterial pathogen before starting the antibiotic therapy.

In the group of cephalosporins, cefazidime and cefepime demonstrate the highest activity against both species E. coli and K. pneumoniae. Resistance to third- and fourth-generation cephalosporins among enteric bacteria is often related to the production of extended-spectrum β-lactamas (ESBL). According to our results, ESBL-producing isolates associated with PLA are relatively rare (9.1-20%), which allows the empirical treatment with cefazidime and cefepime to be a component of the therapeutic approach in PLA patients. In a study comparing the etiological spectrum and antimicrobial resistance of the causative pathogens associated with PLA in patients with and without diabetes mellitus, a statistically significantly higher proportion of ESBL-producing E. coli and K. pneumoniae was established (18).

In the group of aminoglycosides, amikacin demonstrates a very good in vitro activity against these two predominant bacterial species - E. coli and K. pneumoniae. Because of the low level of resistance to amikacin (7.7% for K. pneumoniae and 0% for E. coli), it can be recommended as a part of the treatment regimen of PLA patients. However, the lack of activity of the aminoglycosides against obligate anaerobic bacteria eliminates the option to use these agents as a mono-therapy. They can be used only as a part of combined antimicrobial treatment.

CONCLUSIONS

Our study demonstrates that Gram-negative microbial flora represented mostly by E. coli and K. pneumoniae clearly dominates in the spectrum of PLA-associated bacterial pathogens. The treatment with third- or fourth-generation cephalosporins such as ceftazidime and cefepime or piperacillin/tazobactam, in combination with amikacin results in most cases to a therapeutic success due to the low levels of resistance to these antimicrobial agents. Carbapenem therapy in high-risk PLA patients and in cases of suspected nosocomial infections is recommended.

REFERENCES

