TIMING OF OPERATIVE MANAGEMENT IN PATIENTS WITH TRAUMATIC CENTRAL CORD SYNDROME

Dimitar Haritonov, Svetoslav Kalevski, Nikolay Peev, Evgenia Kalevska

Department of Neurosurgery, University Hospital St. Anna, Medical University of Varna

ABSTRACT

OBJECTIVES: Patients with traumatic central cord syndrome (TCCS) provide some of the most dramatic opportunities for neurological improvement when compared to other subgroups of SCI, particularly evident in young patients with TCCS. The purpose of this study is to review a series of patients with central cord syndrome and to corroborate the consensus about optimal treatment and surgical timing for decompression.

MATERIALS AND METHODS: Patients developing this suffering belong to two relative categories – the first group are relatively young patients with a high-energy injury that leads to fracture/subluxation or dislocation. The second category are older individuals who, due to a low-energy fall or cervical hyperextension injury present with TCCS that occurs in the presence of cervical spondylosis but without obvious injury to the spinal column. The main tool for refinement of the operative window was ASIA motor score.

RESULTS: Thirty-two patient were divided in two groups – patients with ASIA motor score less than or equal to 50 p. (mean – 42.4 p.) – 10, and patients with a score higher than 50 p. (mean – 67.45 p.) – 22. Patients with ASIA M scores less than 50 p. were operated within 24 hours, but 2 patients from these – within 20 days. Patients with ASIA M score higher than 50 p. underwent decompression within 72 hours. All patients sustained improvement in neurological status with the exception of these two, who underwent late decompression.

DISCUSSION: These cases clearly demonstrate to what range should operative activity be targeted in patients with TCCS. Patients with ASIA M score 80 and above, with MRI fracture evidence and those who may have already experienced significant motor improvement between the time of injury and the moment of initial neurological evaluation, may undergo delayed surgical treatment.

CONCLUSIONS: There was a recommendation based on low-quality evidence that early (as soon as feasible) surgical decompression for patients with TCCS and spondylosis should be recommended when their initial neurological impairment is significant.

Keywords: traumatic central cord syndrome, spinal cord injury, spinal decompression

INTRODUCTION

Traumatic central cord syndrome is the most common incomplete cervical cord lesion and accounts for up to 70% of all incomplete cervical cord injuries (1,2). It is classically described as disproportionately more upper extremity weakness than lower extremity involvement, bladder dysfunction, and variable sensory loss below the involved level (3). Most studies indicate that patients have significant...
neurologic recovery with variable functional recovery (2-16). Recovery after traumatic central cord syndrome has been related to a number of prognostic factors, including initial American Spinal Injury Association (ASIA) (13,16), magnetic resonance imaging (MRI) evidence of spinal cord edema and hemorrhage (1,17,18), the patient’s age (13,15,19,20), good hand function (1), absence or presence of spasticity (2,13,15), and type of injury (11). Although these factors have been identified by various studies, no research has yet incorporated these elements into a classification system that is predictive of functional recovery. The purpose of this article is to present optimal operative timing of traumatic central cord syndrome that should lead to maximal functional recovery and outcome.

Patients and Methodology

Between 2006 and 2010 37 patients, who developed this suffering after hyperextension injury, were presented with TCCS that occurs in the presence of cervical spondylosis, but without obvious injury to the spinal column. Neurologic assessment was performed by spine service and included history, physical examination, computed tomography scans of the cervical spine and MRI of the spine. Patients were diagnosed with central cord syndrome if they had cervical spinal cord injury with disproportionately more weakness in the upper extremities than lower extremities and sacral pinprick or voluntary motor sparing. The main tools for refinement of neurologic assessment were ASIA Impairment Scale and SLIC and MRI evidence in T2-weighted sagittal imaging for spinal cord injury and oedema (Fig. 1, 2). 29 patients were in admission with an ASIA D level and the other group of 8 patients were with an ASIA C level.

<table>
<thead>
<tr>
<th>ASIA C</th>
<th>ASIA B</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>29/78.37%</td>
<td>8/21.62%</td>
</tr>
</tbody>
</table>

Operative timing was split in two intervals – early operative management within 24 hours and delayed operative management (>24 hours). The candidates for early surgery were patients with a spinal cord compression – traumatic disc herniation and no neurological improvement during the initial 24 hours. The other group of operative cases who presented with delayed surgery were patients with severe cervical spondylosis, without spinal cord com-
Timing of operative management in patients with traumatic central cord syndrome

pression and neurologic improvement in the initial 24-36 hours.

DISCUSSION

The fundamental question that the treating surgeon has to answer is whether to operate acutely or to consider an initial period of nonsurgical treatment. This question has two components, the first relating to whether there is a benefit to surgical decompression in this population and the second to the potential timing of this intervention. If the timing of surgery is not relevant, then it is most reasonable to observe the patients’ motor and sensory function for as long as they continue to make neurological gains, and to reserve surgery for those patients whose spontaneous neurological improvement ceases or plateaus at a non-functional level. In the study of Guest et al. (12) only those patients without spondylosis/stenosis had improved motor recovery resulting from early surgery. Yamazaki et al (33) observed that there were no benefits from a conducted intervention unless within 2 weeks. Other authors introduced a recommendation for surgery if there was TCCS in the presence of compressive lesions and no improvement within 4 weeks. When the surgical cohort was further stratified into early (within 2 weeks; mean 8 days) and late (after 2 weeks; mean 30 days) intervention, the patients in the early surgery group, despite having worse JOA score (8.7) and narrower AP diameter (8.8 mm), exhibited greater recovery (80%) than the late surgery group (48%) and this was interpreted by the authors as a compelling argument for early surgery. Dai and Jia (10) reported retrospectively reviewed 24 patients with disk herniation causing acute CCS. All patients had anterior decompression and good neurological improvement. Uribe et al (34) in a paper that presents the results of posterior laminoplasty in a group of patients with TCCS and cervical spondylosis, reported on the results of early (mean – 3 days post injury) surgery in 15 patients. By reporting early postoperative neurological improvement in all patients, the paper by Uribe et al has provided high quality evidence in support of early surgery.

CONCLUSION

In this prospectively collected retrospective review of 37 patients with traumatic central cord syndrome, 3 factors were predictive of one year functional outcome: ASIA Motor Score at the time of injury, MRI evidence of abnormal signal intensity and steroid administration at the time of injury. ASIA Motor Score and MRI evidence of abnormal signal intensity were used to create a predictive classification system called Central Cord Injury Scale (CCIS). Surgery is recommended when patients with TCCS have compressive lesions and expressed spondylosis.

REFERENCES


