Scientific Online Resource System

Scripta Scientifica Medica

SIRT6, FOXO4, HIF3А: Unlocking key metabolic regulators in cancer cells

Pantelis Dimaras, Oskan Tasinov, Desislava Ivanova, Yoana Kiselova-Kaneva, Diana Ivanova


In recent years, there has been an expanding interest in understanding metabolic regulation in cancer cells. Since cancer cells are characterized by accelerated rate of proliferation, their metabolic demands are increased. The latter forces cancer cells to facilitate metabolic pathways, which are not normally active in healthy cells. In order to achieve this, cancer cells use the regulatory machinery of these pathways to survive and acquire resistance against defense mechanisms of molecular or cellular origin. In this review, we focus on three regulatory genes SIRT6, FOXO4, HIF3A, which orchestrate basic metabolic pathways, such as energy metabolism, and regulate proliferation. Their expression is altered in conjunction with cancer type and
stage. In this way, they can act as oncogenes or tumor suppressors.


cancer metabolism; SIRT6; FOXO4; HIF3A

Full Text


DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2(5):e1600200. doi:10.1126/sciadv.1600200.

Kugel S, Mostoslavsky R. Chromatin and beyond: The multitasking roles for SIRT6. Trends Biochem Sci. 2014;39(2):72-81. doi:10.1016/j.tibs.2013.12.002.

Coomans de Brachène A, Demoulin JB. FOXO transcription factors in cancer development and therapy. Cell Mol Life Sci. 2015;73(6):1159-72. doi:10.1007/s00018-015-2112-y.

Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010;29(5):625-34. doi:10.1038/onc.2009.441.

Lunt SY, Vander Heiden MG. Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27(1):441-64. doi:10.1146/annurev-cellbio-092910-154237.

Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144(5):646-74. doi:10.1016/j.cell.2011.02.013.

Koppenol WH, Bounds PL, Dang C V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325-37. doi:10.1038/nrc3038.

Jones RG, Thompson CB. Tumor suppressors and cell metabolism: A recipe for cancer growth. Genes Dev. 2009;23(5):537-48. doi:10.1101/gad.1756509.

Vander Heiden M, Cantley L, Thompson C. Understanding the Warburg effect: The metabolic requiremetns of cell proliferation. Science. 2009;324(5930):1029-33. doi: 10.1126/science.1160809.

Ahn CS, Metallo CM. Mitochondria as biosynthetic factories for cancer proliferation. Cancer Metab. 2015;3(1):1. doi:10.1186/s40170-015-0128-2.

Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem. 2002;277(34):30409-12. doi:10.1074/jbc.R200006200.

Kennedy KM, Dewhirst MW. Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol. 2010;6(1):127-48. doi:10.2217/fon.09.145.

DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11-20. doi:10.1016/j.cmet.2007.10.002.

Semenza GL. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010;20(1):51-6. doi:10.1016/j.gde.2009.10.009.

Mei Z, Zhang X, Yi J, Huang J, He J, Tao Y. Sirtuins in metabolism, DNA repair and cancer. J Exp Clin Cancer Res. 2016;35(1):182. doi:10.1186/s13046-016-0461-5.

Liu T, Liu PY, Marshall GM. The critical role of the class III histone deacetylase SIRT1 in cancer. Cancer Res. 2009;69(5):1702-5. doi: 10.1158/0008-5472.CAN-08-3365.

Wang RH, Zheng Y, Kim HS, Xu X, Cao L, Luhasen T, et al. Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol Cell. 2008;32(1):11-20. doi: 10.1016/j.molcel.2008.09.011.

Seo KS, Park JH, Heo JY, Jing K, Han J, Min KN, et al. SIRT2 regulates tumour hypoxia response by promoting HIF-1α hydroxylation. Oncogene. 2015;34(11):1354-62. doi: 10.1038/onc.2014.76.

Finley LW, Carracedo A, Lee J, Souza A, Egia A, Zhang J, et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell. 2011;19(3):416-28. doi: 10.1016/j.ccr.2011.02.014.

Shedden K, Taylor JM, Enkemann SA, Tsao MS, Yeatman TJ, Gerald WL, et al.; Director's Challenge Consortium for the Molecular Classification of Lung Adenocarcinoma. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med. 2008;14(8):822-7. doi: 10.1038/nm.1790.

Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, ety al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell. 2013;50(6):919-30. doi: 10.1016/j.molcel.2013.06.001.

Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8(6):519-30.

Zhong L, D'Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell. 2010;140(2):280-93. doi: 10.1016/j.cell.2009.12.041.

Sebastián C, Zwaans BMM, Silberman DM, Gymrek M, Goren A, Zhong L, et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell. 2012;151(6):1185-99. doi:10.1016/j.cell.2012.10.047.

Min L, Ji Y, Bakiri L, Qiu Z, Cen J, Chen X, et al. Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin. Nat Cell Biol. 2012;14(11):1203-11. doi:10.1038/ncb2590.

Lai CC, Lin PM, Lin SF, Hsu CH, Lin HC, Hu ML, et al. Altered expression of SIRT gene family in head and neck squamous cell carcinoma. Tumour Biol. 2013;34(3):1847-54. doi: 10.1007/s13277-013-0726-y.

Wang JC, Kafeel MI, Avezbakiyev B, Chen C, Sun Y, Rathnasabapathy C, et al. Histone deacetylase in chronic lymphocytic leukemia. Oncology. 2011;81(5-6):325-9. doi:10.1159/000334577.

Fu Z, Tindall DJ. FOXOs, cancer and regulation of apoptosis. Oncogene. 2008;27(16):2312-9. doi:10.1038/onc.2008.24.

Van Der Heide LP, Hoekman MFM, Smidt MP. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J. 2004;380(Pt 2):297-309. doi:10.1042/BJ20040167.

Anderson MJ, Viars CS, Czekay S, Cavenee WK, Arden KC. Cloning and characterization of three human forkhead genes that comprise an FKHR-like gene subfamily. Genomics. 1998;47(2):187-99. doi:10.1006/geno.1997.5122.

van der Heide LP, Jacobs FMJ, Burbach JPH, Hoekman MFM, Smidt MP. FoxO6 transcriptional activity is regulated by Thr26 and Ser184, independent of nucleo-cytoplasmic shuttling. Biochem J. 2005;391(Pt 3):623-9. doi:10.1042/BJ20050525.

Wang Y, Zhou Y, Graves DT. FOXO transcription factors: their clinical significance and regulation. Biomed Res Int. 2014;2014:925350. doi: 10.1155/2014/925350.

Oellerich MF, Potente M. FOXOs and sirtuins in vascular growth, maintenance, and aging. Circ Res. 2012;110(9):1238-51. doi:10.1161/CIRCRESAHA.111.246488.

Fuhrer DK, Yang YC. Complex formation of JAK2 with PP2A, P13K, and Yes in response to the hematopoietic cytokine interleukin-11. Biochem Biophys Res Commun. 1996;224(2):289-96. doi:S0006291X96910232.

Huang H, Tindall DJ. FOXO factors: a matter of life and death. Future Oncol. 2006;2(1):83-9. doi:10.2217/14796694.2.1.83.

Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci. 2007;120(Pt 15):2479-87. doi:10.1242/jcs.001222.

Lee MJ, Yu GR, Yoo HJ, Kim JH, Yoon BI, Choi YK, et al. ANXA8 down-regulation by EGF-FOXO4 signaling is involved in cell scattering and tumor metastasis of cholangiocarcinoma. Gastroenterology. 2009;137(3):1138-50, 1150.e1-9. doi: 10.1053/j.gastro.2009.04.015.

Liu X, Zhang Z, Sun L, Chai N, Tang S, Jin J, et al. MicroRNA-499-5p promotes cellular invasion and tumor metastasis in colorectal cancer by targeting FOXO4 and PDCD4. Carcinogenesis. 2011;32(12):1798-805. doi: 10.1093/carcin/bgr213.

Xue X, Jungles K, Onder G, Samhoun J, Győrffy B, Hardiman KM. HIF-3α1 promotes colorectal tumor cell growth by activation of JAK-STAT3 signaling. Oncotarget. 2016;7(10):11567-79. doi:10.18632/oncotarget.7272.

Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721-32. doi:10.1038/nrc1187.

Ghoshal P, Teng Y, Lesoon LA, Cowell JK. HIF1A induces expression of the WASF3 metastasis-associated gene under hypoxic conditions. Int J Cancer. 2012;131(6):E905-15. doi:10.1002/ijc.27631.

Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev. 2003;29(4):297-307. doi:10.1016/S0305-7372(03)00003-3.

Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, et al. Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res. 1999;59(22):5830-5.

Bando H, Toi M, Kitada K, Koike M. Genes commonly upregulated by hypoxia in human breast cancer cells MCF-7 and MDA-MB-231. Biomed Pharmacother. 2003;57(8):333-40. doi:10.1016/S0753-3322(03)00098-2.

Chiavarina B, Martinez-Outschoorn UE, Whitaker-Menezes D, Howell A, Tanowitz HB, Pestell RG, et al. Metabolic reprogramming and two-compartment tumor metabolism: opposing role(s) of HIF1A and HIF2A in tumor-associated fibroblasts and human breast cancer cells. Cell Cycle. 2012;11(17):3280-3289. doi:10.4161/cc.21643.

Pasanen A, Heikkilä M, Rautavuoma K, Hirsilä M, Kivirikko KI, Myllyharju J. Hypoxia-inducible factor (HIF)-3A is subject to extensive alternative splicing in human tissues and cancer cells and is regulated by HIF-1 but not HIF-2. Int J Biochem Cell Biol. 2010;42(7):1189-1200. doi:10.1016/j.biocel.2010.04.008.

Heikkilä M, Pasanen A, Kivirikko KI, Myllyharju J. Roles of the human hypoxia-inducible factor (HIF)-3α variants in the hypoxia response. Cell Mol Life Sci. 2011;68(23):3885-901. doi:10.1007/s00018-011-0679-5.



About The Authors

Pantelis Dimaras
Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University “Prof. Dr. P. Stoyanov”, 84B“Tzar Osvoboditel”Blvd., 9002 Varna, Bulgaria

Oskan Tasinov
Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University “Prof. Dr. P. Stoyanov”, 84B“Tzar Osvoboditel”Blvd., 9002 Varna, Bulgaria

Desislava Ivanova
Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University “Prof. Dr. P. Stoyanov”, 84B“Tzar Osvoboditel”Blvd., 9002 Varna, Bulgaria

Yoana Kiselova-Kaneva
Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University “Prof. Dr. P. Stoyanov”, 84B“Tzar Osvoboditel”Blvd., 9002 Varna, Bulgaria

Diana Ivanova
Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University “Prof. Dr. P. Stoyanov”, 84B“Tzar Osvoboditel”Blvd., 9002 Varna, Bulgaria

Font Size