Scientific Online Resource System

Scripta Scientifica Medicinae Dentalis

Comparison between the influence of implant diameter and implant length on the primary stability

Elitsa Sabeva

Abstract

INTRODUCTION:

The primary stability is a factor for successful osseointegration of dental implants. It is believed that factors that can increase the contact area between the implant and the bone, such as the implant shape, length, and diameter, can also increase the primary stability.

AIM   

The aim of this study was to determine whether the increase of implant length or the increase of implant diameter would contribute more to the enhancement of primary stability.

MATERIALS AND METHODS

The implant primary stability of 60 implants distributed in 6 groups, according their diameter, length and surface topography was evaluated using three methods: assessment of mean insertion torque, periotest values, and resonance frequency analysis.

RESULTS AND DISCUSSION

The results demonstrated that the primary stability achieved by increasing the diameter of the implants by 0.7 mm was comparable to that obtained by increasing their length by 2 mm at a smaller diameter (4.1 mm). When the difference in the diameter increased more (from 0.7 mm to 1.5 mm, when comparing the 3.3 mm/10 mm and 4.8 mm/8 mm implants), the increase of the length of the smaller diameter implants did not result in primary stability values comparable to those obtained during the insertion of  wider and shorter implants.

CONCLUSION

Considering our results as well as the literature data, we can conclude that the increase of the implant diameter affects more the improving of the primary stability than the increase of the implant length. However, it should be taken into account that this refers to a specific diameter change of 1.5 mm and length change of 2 mm. More studies, including implants with a greater difference in the length and a different diameter to length ratio, are needed to confirm or reject this relation.


Keywords

diameter, length, implant, primary stability

Full Text


References

Meredith N, Alleyne D, Cawley P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin Oral Implants Res. 1996;7(3):261-7.

Javed F, Romanos GE. The role of primary stability for successful immediate loading of dental implants. A literature review. J Dent. 2010;38(8):612–20. doi: 10.1016/j.jdent.2010.05.013.

Lioubavina-Hack N, Lang NP, Karring T. Significance of primary stability for osseointegration of dental implants. Clin Oral Implants Res. 2006;17(3):244-50. doi: 10.1111/j.1600-0501.2005.01201.x.

Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont. 1998;11(5):491-501.

Deporter DA, Watson PA, Pilliar RM, Melcher AH, Winslow J, Howley TP, et al. A histological assessment of the initial healing response adjacent to porous-surfaced, titanium alloy dental implants in dogs. J Dent Res. 1986 Aug;65(8):1064-70. doi: 10.1177/00220345860650080501.

Pilliar RM, Simmons CA. Mechanical factors and osseointegration: influence of implant design. In: Zarb G, Lekholm U, Albrektsson T, Tennenbaum H, editors. Aging, osteoporosis, and dental implants. Chicago, IL: Quintessence; 2002. pp. 35-44.

Joos G, Freeman IM. Theoretical Physics. Dover Publications;1987. pp. 50-1.

Orsini E, Giavaresi G, Trirè A, Ottani V, Salgarello S. Dental implant thread pitch and its influence on the osseointegration process: an in vivo comparison study. Int J Oral Maxillofac Implants. 2012;27(2):383–92.

Winter W, Möhrle S, Holst S, Karl M. Parameters of implant stability measurements based on resonance frequency and damping capacity: a comparative finite element analysis. Int J Oral Maxillofac Implants. 2010;25(3):532-9.

Ryu HS, Namgung C, Lee JH, Lim YJ. The influence of thread geometry on implant osseointegration under immediate loading: a literature review. J Adv Prosthodont. 2014;6(6):547-54. doi: 10.4047/jap.2014.6.6.547.

Lachmann S, Laval JY, Axmann D, Weber H. Influence of implant geometry on primary insertion stability and simulated peri-implant bone loss: an in vitro study using resonance frequency analysis and damping capacity assessment. Int J Oral Maxillofac Implants. 2011;26(2):347-55.

Barikani H, Rashtak S, Akbari S, Fard MK, Rokn A. The effect of shape, length and diameter of implants on primary stability based on resonance frequency analysis. Dent Res J (Isfahan). 2014;11(1):87-91.

Abuhussein H, Pagni G, Rebaudi A, Wang HL. The effect of thread pattern upon implant osseointegration. Clin Oral Implants Res. 2010;21(2):129–136. doi: 10.1111/j.1600-0501.2009.01800.x.

Langer B, Langer L, Herrmann I, Jorneus L. The wide fixture: a solution for special bone situations and a rescue for the compromised implant. Part 1. Int J Oral Maxillofac Implants. 1993;8(4):400-8.

Peev S, Atanasov D. Platelet-rich plasma – an accelerator of the secondary stability of immediate loaded implants. J of IMAB - Annual Proceeding (Scientific Papers). 2007;2:38-40.

Ostman PO, Hellman M, Wendelhag I, Sennerby L. Resonance frequency analysis measurements of implants at placement surgery. Int J Prosthodont. 2006;19(1):77-83; discussion 84.

Merheb J, Van Assche N, Coucke W, Jacobs R, Naert I, Quirynen M. Relationship between cortical bone thickness or computerized tomography-derived bone density values and implant stability. Clin Oral Impl Res. 2010; 21(6):612–7. doi: 10.1111/j.1600-0501.2009.01880.x.

Han J, Lulic M, Lang NP. Factors influencing resonance frequency analysis assessed by Osstell mentor during implant tissue integration: II. Implant surface modifications and implant diameter. Clin Oral Implants Res. 2010;21(6):605-11. doi: 10.1111/j.1600-0501.2009.01909.x.

Bilhan H, Geckili O, Mumcu E, Bozdag E, Sünbüloğlu E, Kutay O. Influence of surgical technique, implant shape and diameter on the primary stability in cancellous bone. J Oral Rehabil. 2010;37(12):900–7. doi: 10.1111/j.1365-2842.2010.02117.x.

Maiorana C, Farronato D, Pieroni S, Cicciu M, Andreoni D, Santoro F. A four-year survival rate multicenter prospective clinical study on 377 implants: Correlations between implant insertion torque, diameter, and bone quality. J Oral Implantol. 2015;41(3):e60-5. doi: 10.1563/AAID-JOI-D-13-00206.

Rokn A, Ghahroudi AR, Mesgarzadeh A, Miremadi A, Yaghoobi S. Evaluation of stability changes in tapered and parallel wall implants: A human clinical trial. J Dent (Tehran) 2011;8(4):186–200.

Tsolaki IN, Tonsekar PP, Najafi B, Drew HJ, Sullivan AJ, Petrov SD. Comparison of osteotome and conventional drilling techniques for primary implant stability: An in vitro study. J Oral Implantol. 2016;42(4):321-5. doi: 10.1563/aaid-joi-D-15-00176.

Möhlhenrich SC, Kniha K, Heussen N, Hölzle F, Modabber A. Effects on primary stability of three different techniques for implant site preparation in synthetic bone models of different densities. Br J Oral Maxillofac Surg. 2016;54(9):980-6. doi: 10.1016/j.bjoms.2016.07.004.

Merheb J, Temmerman A, Rasmusson L, Kübler A, Thor A, Quirynen M. Influence of skeletal and local bone density on dental implant stability in patients with osteoporosis. Clin Implant Dent Relat Res. 2016;18(2):253-60. doi: 10.1111/cid.12290.

Sabeva E, Peev S, Miteva M, Georgieva M. The impact of the thread design compared to the impact of the surface topography on the primary stability of implants inserted into fresh pig ribs. Scr Sci Medicinae Dentalis. 2017; 3(1):60-4. doi: 10.14748/ssmd.v3i1.2917.

Möhlhenrich SC, Heussen N, Elvers D, Steiner T, Hölzle F, Modabber A. Compensating for poor primary implant stability in different bone densities by varying implant geometry: a laboratory study. Int J Oral Maxillofac Surg. 2015;44(12):1514-20. doi: 10.1016/j.ijom.2015.08.985.

Lan TH, Du JK, Pan CY, Lee HE, Chung WH. Biomechanical analysis of alveolar bone stress around implants with different thread designs and pitches in the mandibular molar area. Clin Oral Investig. 2012;16(2):363–9. doi: 10.1007/s00784-011-0517-z.

Calvo-Guirado JL, López Torres JA, Dard M, Javed F, Pérez-Albacete Martínez C, Maté Sánchez de Val JE. Evaluation of extrashort 4-mm implants in mandibular edentulous patients with reduced bone height in comparison with standard implants: a 12-month results. Clin Oral Implants Res. 2016;27(7):867-74. doi: 10.1111/clr.12704.

de Oliveira GJ, Barros-Filho LA, Barros LA, Queiroz TP, Marcantonio E Jr. In vitro evaluation of the primary stability of short and conventional implants. J Oral Implantol. 2016;42(6):458-63. doi: 10.1563/aaid-joi-D-16-00094.

Miyamoto I, Tsuboi Y, Wada E, Suwa H, Iizuka T. Influence of cortical bone thickness and implant length on implant stability at the time of surgery--clinical, prospective, biomechanical, and imaging study. Bone. 2005;37(6):776-80. doi: 10.1016/j.bone.2005.06.019.

Gómez-Polo M, Ortega R, Gómez-Polo C, Martín C, Celemín A, Del Río J. Does length, diameter, or bone quality affect primary and secondary stability in self-tapping dental implants? J Oral Maxillofac Surg. 2016;74(7):1344-53. doi: 10.1016/j.joms.2016.03.011.

Horwitz J, Zuabi O, Peled M. Resonance frequency analysis in immediate loading of dental implants. Refuat Hapeh Vehashinayim. 2003;20(3):80-8, 104.

Engelke W, Decco OA, Cura AC, Maldonado I, Crippa FG. Influence of implant diameter in the displacement of dental implants in trabecular bovine bone under a static lateral load: experimental results and computational modeling. Implant Dent. 2014;23(6):635-40. doi: 10.1097/ID.0000000000000169.




DOI: http://dx.doi.org/10.14748/ssmd.v4i2.5635

Refbacks

About The Author

Elitsa Sabeva
Medical University of Varna
Bulgaria

Department of Periodontology and Dental Implantology, Faculty of Dental Medicine

Font Size


|