Scientific Online Resource System

Scripta Scientifica Pharmaceutica

A review: Biological activity of myrtenal and some myrtenal-containing medicinal plant essential oils

Stela Dragomanova, Lyubka Tancheva, Marieta Georgieva

Abstract

Introduction: Myrtenal, a component of many plants’ essential oils, is a bicyclic monoterpenoid. Numerous effects of myrtenal in experimental animals have been found – bronchodilatory, anti-inflammatory, anti-aggregative and antihemolytic (in vitro), and antibacterial.  Its other activities have been studied – antioxidant, antitumor, antihyperglycemic, vasodilating, heart rate reducing and hypotensive. Myrtenal is relatively little studied in the field of neuroscience.

Aim: The aim of this article is to summarize the available information on the established biological activity of the monoterpenoid myrtenal.

Materials and Methods: Scientific databases such as PubMed, ResearchGate, HMDB and others have been used to provide information on the published results of properties and activities of the test substance (myrtenal) over a period of 15 years (2003 – 2018).

Results: Our research confirmed the available data for its central nervous system (CNS) activity – anxiolytic and potentiating the effects of the hypnotic drugs, as well as the antioxidant properties. We have evaluated the neuromodulatory activity of M in brain tissue manifested in elevated levels of major neurotransmitters in healthy rodents and those with neurodegenerative changes accompanied by improvement in the animals’ memory.

Conclusion: Significant protective effects of myrtenal on neurodegenerative processes were established. Probably they are related to its complex mechanisms, including neuromodulatory and antioxidant properties.


Keywords

myrtenal, biological activity, neurodegeneration

Full Text


References

Zhang L, Demain AL (Eds.) Natural products: drug discovery and therapeutic medicine. Humana Press Inc.; 2005.

Yoo KY, Park SY. Terpenoids as potential anti-Alzheimer’s disease therapeutics. Molecules. 2012;17(3):3524-8. doi: 10.3390/molecules17033524.

Boskabady MH, Jandaghi P. Relaxant effects of carvacrol on guinea pig tracheal chains and its possible mechanisms. Pharmazie. 2003;58(9):661-3.

Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel). 2013; 6(12):1451-74.

Eccles R. Menthol and Related Cooling Compounds. J Pharm Pharmacol. 1994; 46: 618-30.

Brum LFS, Elisabetsky E, Souza D. Effects of linalool on [3H] MK801 and [3H] muscimol binding in mouse cortical membranes. Phytother Res. 2001;15(5):422-5.

Park TJ, Park YS, Lee TG, Ha H, Kim KT. Inhibition of acetylcholine-mediated effects by borneol. Biochem Pharmacol. 2003;65(1):83-90.

Habtemariam S. Antidiabetic Potential of monoterpenes: A case of small molecules punching above their weight. Int J Mol Sci. 2017;19(1). pii: E4. doi: 10.3390/ijms19010004.

Subramaniyan SD, Natarajan AK. Citral, a monoterpene protect against high glucose induced oxidative injury in HepG2 cell in vitro-an experimental study. J Clin Diagn Res. 2017; 11(8): BC10-BC15. doi: 10.7860/JCDR/2017/28470.10377.

Varghese GK, Bose LV, Habtemariam S. Antidiabetic components of Cassia alata leaves: Identification through α-glucosidase inhibition studies. Pharm Biol. 2013; 51(3):345-9. doi: 10.3109/13880209.2012.729066.

Zhang Y, Yaqin D, Xiangqin Z, Qing G, Hui W, Jingying G, et al. Geniposide acutely stimulates insulin secretion in pancreatic β-cells by regulating GLP-1 receptor/cAMP signaling and ion channels. Mol Cell Endocrinol. 2016;430:89-96. doi: 10.1016/j.mce.2016.04.020.

Ramakrishnan M, Ramalingam S. Antidiabetic effect of d-limonene, a monoterpene in streptozotocin-induced diabetic rats. Biomed Prevent Nutr. 2012; 2(4):269-75. doi: 10.1016/j.bionut.2012.08.008.

Luft VC, Schmidt MI, Pankow JS, Couper D, Ballantyne CM, Young JH, et al. Chronic inflammation role in the obesity-diabetes association: a case-cohort study. Diabetol Metab Syndr. 2013;5(1):31. doi: 10.1186/1758-5996-5-31.

Kong P, Chi R, Zhang L, Wang N, Lu Y. Effects of paeoniflorin on tumor necrosis factor-α-induced insulin resistance and changes of adipokines in 3T3-L1 adipocytes. Fitoterapia. 2013;91:44-50. doi: 10.1016/j.fitote.2013.08.010.

De Sousa DP. Analgesic-like activity of essential oils constituents. Molecules. 2011;16(3):2233-52. doi: 10.3390/molecules16032233.

Samaila D, Toy BJ, Wang RC, Elegbede JA. Monoterpenes enchanced the sensitivity of head and neck cancer cells to radiation treatment in vitro. Anticancer Res. 2004;24(5A):3089-95.

Fang F, Li H, Qin T, Li M, Ma S. Thymol improves high-fat diet-induced cognitive deficits in mice via ameliorating brain insulin resistance and upregulating NRF2/HO-1 pathway. Metab Brain Dis. 2017;32(2):385-393. doi: 10.1007/s11011-016-9921-z.

Deng W, Lu H, Teng J. Carvacrol attenuates diabetes-associated cognitive deficits in rats. J Mol Neurosci. 2013;51(3):813-9. doi: 10.1007/s12031-013-0069-6.

Miyazawa M, Yamafuji C. Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids. J Agric Food Chem. 2005;53(5):1765-8. doi: 10.1021/jf040019b.

Moraghebi F. Introduction of mirtenal as an indicator component in essential oil of Cuminum cyminum Isfahan variety. J Biodivers Environ Sci. 2013; 3(11):112-7.

El Ghadraoui L, Essakhi D, Benjelloun M, Errabhi N, El Harchli H, Alaoui MM, et al. Chemical composition of essential oils from Rosmarinus officinalis L. and acridicide activity on Dociostaurus maroccanus Thunberg, 1815 in Morocco. Int J Sci Eng Res. 2015; 6(8):166-72.

Pino JA, Rosado A, Fuentes V. Chemical composition of the seed oil of Coriandrum sativum L. from Cuba. J Essent Oil Res. 1996; 8(1):97-8. doi: 10.1080/10412905.1996.9700565.

Kizil S, Haşimi N, Tolan V, Kilinç E, Karataş H. Chemical composition, antimicrobial and antioxidant activities of Hyssop (Hyssopus officinalis, L) essential oil. Not Bot Hort Agrobot Cluj-Napoca. 2010; 38(3):99-103. doi: 10.15835/nbha3834788.

Smigielski K, Raj A, Krosowiak K, Gruska R. Chemical composition of the essential oil of Lavandula angustifolia cultivated in poland. J Essent Oil Bear Pl. 2009;12(3):338-47. doi: 10.1080/0972060X.2009.10643729.

Radulović NS, Randjelović PJ, Stojanović NM, Blagojević PD, Stojanović-Radić ZZ, Ilić IR, et al. Toxic essential oils. Part II: Chemical, toxicological, pharmacological and microbiological profiles of Artemisia annua L. Volatiles. Food Chem Toxicol. 2013;58:37-49. doi: 10.1016/j.fct.2013.04.016.

Wong K, Chong T, Chee S. Essential oil of Curcuma mangga Val. and van Zijp rhizomes. J Essent Oil Res. 1999; 11(3):349-51. doi: 10.1080/10412905.1999.9701151.

De Falco E, Mancini E, Roscigno G, Mignola E, Taglialatela-Scafati O, Senatore F. Chemical composition and biological activity of essential oils of Origanum vulgare L. subsp. vulgare L. under different growth conditions. Molecules. 2013;18(12):14948-60. doi: 10.3390/molecules181214948.

Etievant PX, Azar M, Pham-Delegue MH, Masson CJ. Isolation and identification of volatile constituents of sunflowers (Helianthus annuus L.). J Agric Food Chem. 1984;32(3): 503-9. doi: 10.1021/jf00123a021.

Rather MA, Dar BA, Dar MY, Wani BA, Shah WA, Bhat BA, et al. Chemical composition, antioxidant and antibacterial activities of the leaf essential oil of Juglans regia L. and its constituents. Phytomedicine. 2012;19(13):1185-90. doi: 10.1016/j.phymed.2012.07.018.

Blake S. Medicinal Plant Constituents, 2004. Available from: www.NaturalHealthWizards.com

Salgueiro LR, Vila R, Tomàs X, Cañigueral S, Paiva J, da Cunha AP, et al. Essential oil composition and variability of Thymus lotocephalus and Thymus×mourae. Biochem Syst Ecol. 2000;28(5):457-70.

Gardeli C, Vassiliki P, Athanasios M, Kibouris T, Komaitis M. Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chem. 2008; 107(3):1120-30. doi: 10.1016/j.foodchem.2007.09.036.

Human Metabolome Database (HMDB) [Internet], Available from: http://www.hmdb.ca/metabolites/HMDB0035250

Hames-Kocabas EE, Demirci B, Uzel A, Demirci F. Volatile composition of Anatolian propolis by headspace-solid-phase microextraction (HS-SPME), antimicrobial activity against food contaminants and antioxidant activity. J Med Pl Res. 2013; 7(28):2140-9. doi: 10.5897/JMPR2013.4470.

Sayyah M, Peirovi A, Kamalinejad M. Antinociceptive effect of fruit essential oil of Cuminum cyminum L. in rat. Iran Biomed J. 2002b, 6(4):141-5.

Al-Snafi AE. The pharmacological activities of Cuminum cyminum - a review. IOSR J Pharm. 2016; 6(6):46-65.

Shivakumar SI, Shahapurkar AA, Kalmath KV, Shivakumar B. Antiinflammatory activity of fruits of Cuminum cyminum Linn. Pharm Lett. 2010; 2(1):22-4.

Hajlaoui H, Mighri H, Noumi E, Snoussi M, Trabelsi N, Ksouri R, et al. Chemical composition and biological activities of Tunisian Cuminum cyminum L. essential oil: a high effectiveness against Vibrio spp. strains. Food Chem Toxicol. 2010;48(8-9):2186-92. doi: 10.1016/j.fct.2010.05.044.

Jirovetz L, Buchbauer G, Stoyanova AS, Georgiev EV, Damianova ST. Composition, quality control and antimicrobial activity of the essential oil of cumin (Cuminum cyminum L.) seeds from Bulgaria that had been stored for up to 36 years. Intl J Food Sci Technol. 2005; 40(3):305-10. doi: 10.1111/j.1365-2621.2004.00915.x.

Gagandeep DS, Méndiz E, Rao AR, Kale RK. Chemopreventive effects of Cuminum cyminum in chemically induced forestomach and uterine cervix tumors in murine model systems. Nutr Cancer. 2003; 47(2):171-80. doi: 10.1207/s15327914nc4702_10.

Janahmadi M, Niazi F, Danyali S, Kamalinejad M. Effects of the fruit essential oil of Cuminum cyminum Linn. (Apiaceae) on pentylenetetrazol-induced epileptiform activity in F1 neurones of Helix aspersa. J Ethnopharmacol. 2006;104 (1-2):278-82. doi: 10.1016/j.jep.2005.09.019.

Koppula S, Choi D K. Cuminum cyminum extract attenuates scopolamine-induced memory loss and stress-induced urinary biochemical changes in rats: a noninvasive biochemical approach. Pharm Biol. 2011; 49(7):702-8. doi: 10.3109/13880209.2010.541923.

Shirke SS, Jagtap AG. Effects of methanolic extract of Cuminum cyminum on total serum cholesterol in ovariectomized rats. Indian J Pharmacol. 2009; 41(2):92–3. doi: 10.4103/0253-7613.51353.

Zare R, Heshmati F, Fallahzadeh H, Nadjarzadeh A. Effect of cumin powder on body composition and lipid profile in overweight and obese women. Complement Ther Clin Pract. 2014;20(4):297-301. doi: 10.1016/j.ctcp.2014.10.001.

Samani KG, Farrokhi E. Effects of cumin extract on oxLDL, paraoxanase 1 activity, FBS, total cholesterol, triglycerides, HDL-C, LDL-C, Apo A1, and Apo B in in the patients with hypercholesterolemia. Int J Health Sci (Qassim). 2014; 8(1):39-43.

Oluwatuy M, Kaatz GW, Gibbons S. Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry. 2004; 65(24):3249–54. doi: 10.1016/j.phytochem.2004.10.009.

Galistco M, Suarez A, Del Pilar MM, Del Pilar UM, Jimenez J, Gil A, et al. Antihepatotoxic activity of Rosmarinus tomentosus in a model of acute hepatic damage induced by thioacetamide. Phytother Res. 2000; 14(7):522–6.

Takaki I, Bersani-Amado LE, Vendruscolo A, Sartoretto SM, Diniz SP, Bersani-Amado CA, et al. Anti-inflammatory and antinociceptive effects of Rosmarinus officinalis L. essential oil in experimental animal models. J Med Food. 2008; 11(4):741-6. doi: 10.1089/jmf.2007.0524.

González-Trujano ME, Peña EI, Martínez AL, Moreno J, Guevara-Fefer P, Déciga-Campos M, et al. Evaluation of the antinociceptive effect of Rosmarinus officinalis L. using three different experimental models in rodents. J Ethnopharmacol. 2007; 111(3):476-82. doi: 10.1016/j.jep.2006.12.011.

Stefanovits-Banyai E, Tulok MH, Hegedus A, Renner C, Varga IS. Antioxidant effect of various rosemary (Rosmarinus officinalis L.) clones. Acta Biol Szeged. 2003; 47(1-4):111–3.

Minaiyan M, Ghannadi AR, Afsharipour M, Mahzouni P. Effects of extract and essential oil of Rosmarinus officinalis L. on TNBS-induced colitis in rats. Res Pharm Sci. 2011; 6(1):13–21.

Dias PC, Foglio MA, Possenti A, Carvalho JE. Antiulcerogenic activity of crude hydroalcoholic extract of Rosmarinus officinalis L. J Ethnopharmacol. 2000; 69(1):57–62.

Cheung S, Tai J. Anti-proliferative and antioxidant properties of Rosmarinus officinalis. Oncol Rep. 2007; 17(6):1525–31.

Raskovic A, Milanovic I, Pavlovic N, Milijasevic B, Ubavic M, Mikov M. Analgesic effects of rosemary essential oil and its interactions with codeine and paracetamol in mice. Eur Rev Med Pharmacol Sci. 2015; 19(1):165-72.

Wu Y, Huang J, Zuo A, Yao L. Research on the effects of Rosemary (Rosmarinus officinalis L.) on the blood lipids and anti-lipid peroxidation in rats. J Essent Oil Res. 2011; 23(4):26-34. doi: 10.1080/10412905.2011.9700465.

Zheng T, Moss-Pierce T, Ford P, Jiang TA. Rosemary (Rosmarinus officinalis L.) Extract regulates glucose and lipid metabolism by activating AMPK and PPAR pathways in HepG2 cells. J Agric Food Chem. 2013; 61(11):2803-10. doi: 10.1021/jf400298c.

Umezu T. Evaluation of central nervous system acting effects of plant-derived essential oils using ambulatory activity in mice. Pharmacol Pharm. 2013; 4:160-70. doi:10.4236/pp.2013.42023.

Machado DG, Cunha MP, Neis VB, Balen GO, Colla A, Bettio L, et al. Antidepressant-like effects of fractions, essential oil, carnosol and betulinic acid isolated from Rosmarinus officinalis L. Food Chem. 2013; 136(2):999-1005. doi: 10.1016/j.foodchem.2012.09.028.

Zanella CA, Treichel H, Cansian RL, Roman SS. The effects of acute administration of the hydroalcoholic extract of rosemary (Rosmarinus officinalis L.) (Lamiaceae) in animal models of memory. Braz J Pharm Sci. 2012; 48(3). doi: 10.1590/S1984-82502012000300005.

Moss M, Cook J, Wesnes K, Duckett P. Aromas of rosemary and lavender essential oils differentially affect cognition and mood in healthy adults. Int J Neurosci. 2003; 113(1):15-38. doi: 10.1080/00207450390161903

Habtemariam S. The therapeutic potential of rosemary (Rosmarinus officinalis) diterpenes for Alzheimer’s disease. Evid Based Complement Alternat Med. 2016;2016:2680409. doi: 10.1155/2016/2680409.

Park SE, Kim S, Sapkota K, Kim SJ. Neuroprotective effect of Rosmarinus officinalis extract on human dopaminergic cell line, SH-SY5Y. Cell Mol Neurobiol. 2010;30(5):759-67. doi: 10.1007/s10571-010-9502-3.

El Omri A, Han J, Hashizume R, Ben Abdrabbah M, Isoda H. Anti-neuronal stress effect of Tunisian Rosmarinus officinalis extract. J Arid Land Stud. 2009; 19(1):117-20.

Cavanagh HM, Wilkinson JM. Biological activities of lavender essential oil. Phytother Res. 2002;16(4):301-8. doi: 10.1002/ptr.1103.

Hritcu L, Cioanca O, Hancianu M. Effects of lavender oil inhalation on improving scopolamine-induced spatial memory impairment in laboratory rats. Phytomedicine. 2012; 19(6):529-34. doi: 10.1016/j.phymed.2012.02.002.

Rahmati B, Kiasalari Z, Roghani M, Khalili M, Ansari F, Antidepressant and anxiolytic activity of Lavandula officinalis aerial parts hydroalcoholic extract in scopolamine-treated rats, Pharm Biol. 2017;55(1):958-965. doi: 10.1080/13880209.2017.1285320.

Gil-Yong L, Lee C, Park G H, Jang J. Amelioration of Scopolamine-Induced Learning and Memory Impairment by α-Pinene in C57BL/6 Mice. Evid Based Complement Alternat Med. 2017;2017:4926815. doi: 10.1155/2017/4926815.

Stefanello MÉ, Pascoal AC, Salvador MJ. Essential oils from neotropical Myrtaceae: chemical diversity and biological properties. Chem Biodivers. 2011;8(1):73-94. doi: 10.1002/cbdv.201000098.

Ghazal A, Dashti S, Hosseinzadeh H. Review of pharmacological effects of Myrtus communis L. and its active constituents. Phytother Res. 2014;28(8):1125–36. doi: 10.1002/ptr.5122.

Tumen I, Senol FS, Orhan IE. Inhibitory potential of the leaves and berries of Myrtus communis L. (myrtle) against enzymes linked to neurodegenerative diseases and their antioxidant actions. Int J Food Sci Nutr. 2012; 63(4):387-92. doi: 10.3109/09637486.2011.629178.

Begum S, Ali M, Gul H, Ahmad W, Alam S, Khan M, et al. In vitro enzyme inhibition activities of Myrtus communis L. Afr J Pharm Pharmacol. 2012; 6(14):1083-7. doi: 10.5897/AJPP10.134.

Aleksic V, Knezevic P. Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiol Res. 2014;169(4):240-54. doi: 10.1016/j.micres.2013.10.003.

Dairi S, Madani K, Aoun M, Him J L, Bron P, Lauret C, et al., Antioxidative properties and ability of phenolic compounds of Myrtus communis leaves to counteract in vitro LDL and phospholipid aqueous dispersion oxidation. J Food Sci. 2014 Jul;79(7):C1260-70. doi: 10.1111/1750-3841.12517.

Hennia A, Miguel MG, Nemmiche S. Antioxidant Activity of Myrtus communis L. and Myrtus nivellei Batt. & Trab. Extracts: A Brief Review. Medicines (Basel). 2018;5(3):89. doi:10.3390/medicines5030089.

Hailu E, Engidawork E, Asres K. Essential oil of Myrtus communis L. produces a non-sedating anxiolytic effect in mice model of anxiety. Ethiopian Pharm J. 2011; 29(1):1-12. doi: 10.4314/epj.v29i1.1.

Hajiaghaee R, Faizi M, Shahmohammadi Z, Abdollahnejad F, Naghdibadi H, Najafi F, et al. Hydroalcoholic extract of Myrtus communis can alter anxiety and sleep parameters: a behavioural and EEG sleep pattern study in mice and rats. Pharm Biol. 2016, 54(10):2141-8. doi: 10.3109/13880209.2016.1148175.

Birhanie M W, Walle B, Rebba K. Hypnotic effect of the essential oil from the leaves of Myrtus communis on mice. Nat Sci Sleep. 2016;8:267-75. doi: 10.2147/NSS.S101493.

Human Metabolome Database [Internet], Available from: http://www.hmdb.ca/metabolites/HMDB0035250

Ishida T, Toyota M, Asakawa Y. Terpenoid biotransformation in mammals. Metabolism of (+)-citronellal, (+-)-7-hydroxycitronellal, citral, (-)-perillaldehyde, (-)-myrtenal, cuminaldehyde, thujone, and (+-)-carvone in rabbits. Xenobiotica, 1989, 19(8):843-55.

Ishida T. Biotransformation of terpenoids by mammals, microorganisms, and plant-cultured cells, Chem Biodiver. 2005; 2(5):569–90. doi: 10.1002/cbdv.200590038.

2-Formyl-6,6-dimethylbicyclo[3.1.1]hept-2-ene. Food Chem Toxicol. 1988; 26(4):329. doi: 10.1016/0278-6915(88)90165-2.

Hardie J, Isaacs R, Pickett JA, Wadhams LJ, Woodcock CM. Methyl salicylate and (−)-(1R,5S)-myrtenal are plant-derived repellents for black bean aphid,Aphis fabae Scop. (Homoptera: Aphididae). J Chem Ecol. 1994 Nov;20(11):2847-55. doi: 10.1007/BF02098393.

Negoi A, Parvulescu VI, Tudorache M. Peroxidase-based biocatalysis in a two-phase system for allylic oxidation of α-pinene. Catal. Today. 2018; 306:199-206. doi: 10.1016/j.cattod.2017.02.052.

Vegezzi Davide, United States Patent 1980 [Internet], Available from: http://www.google.fr/patents/US4190675?hl=fr&dq=myrt%C3%A9nal#v=onepage&q&f=false

Santos MRV, Moreira FV, Fraga BP, de Souza DP, Bonjardim LR, Quintans-Junior LJ. Cardiovascular effects of monoterpenes: a review. Rev Bras Farmacogn. 2011; 21(4). doi: 10.1590/S0102-695X2011005000119.

Saito K, Okabe T, Inamori Y, Tsujibo H, Miyake Y, Hiraoka K, et al. The biological properties of monoterpenes: Hypotensive effects on rats and antifungal activities on plant pathogenic fungi of monoterpenes. Mokuzai Gakkaishi. 1996; 42:677-80.

Hari Babu L, Perumal S, Balasubramanian MP. Myrtenal attenuates diethylnitrosamine-induced hepatocellular carcinoma in rats by stabilizing intrinsic antioxidants and modulating apoptotic and anti-apoptotic cascades. Cell Oncol (Dordr). 2012 Aug;35(4):269-83. doi: 10.1007/s13402-012-0086-4.

Hari Babu L, Perumal S, Balasubramanian MP. Myrtenal, a natural monoterpene, down-regulates TNF-α expression and suppresses carcinogen-induced hepatocellular carcinoma in rats. Mol Cell Biochem. 2012 Oct;369(1-2):183-93. doi: 10.1007/s11010-012-1381-0.

Hari Babu L, Natarajan N, Thamaraiselvan R, Srinivasan P, Periyasamy BM. Myrtenal ameliorates diethylnitrosamine-induced hepatocarcinogenesis through the activation of tumor suppressor protein p53 and regulation of lysosomal and mitochondrial enzymes. Fundam Clin Pharmacol. 2013 Aug;27(4):443-54. doi: 10.1111/j.1472-8206.2012.01039.x.

Venkatachalam S, Boobathi L, Balasubramanian MP. Salubrious therapeutic efficacy of myrtenal on colon carcinoma induced by 1,2-dimethylhydrazine studied in experimental albino rats. Res J Pharmacol Pharmacodyn. 2014; 6(3):146-52.

Dragomanova S, Tancheva L, Klisurov R, Kalfin R. Myrtenal changes brain oxidative status and the lipid profile in experimental rats. ICBA 2018. Available from: https://www.bio-antioxidants2018.com/

Dragomanova S, Tancheva L, Alexandrova A, Tzvetanova E, Lazarova M, Pavlova A, et. al. Effects of myrtenal on brain oxidative status in rats with experimental dementia. ICBA 2018. Available from: https://www.bio-antioxidants2018.com/

Boobathi L, Venkatachalam S, N Natarajan, Rengarajan T, Madankumar A, Balasubramanian MP. Anti-oxidative effect of myrtenal in prevention and treatment of colon cancer induced by 1, 2-dimethyl hydrazine (DMH) in experimental animals. Biomol Ther (Seoul). 2015;23(5):471-8. doi: 10.4062/biomolther.2015.039.

Booupathy LK, Venkatachalam S, Natarajan N, Thamaraiselvan R, Arumugam M, Maruthaiveeran Periyasamy B. Chemopreventive effect of myrtenal on bacterial enzyme activity and the development of 1,2-dimethyl hydrazine-induced aberrant crypt foci in Wistar rats. J Food Drug Anal. 2016;24(1):206-213. doi: 10.1016/j.jfda.2015.07.003.

Rathinam A, Pari L. Myrtenal ameliorates hyperglycemia by enhancing GLUT2 through Akt in the skeletal muscle and liver of diabetic rats. Chem Biol Interact. 2016; 256:161-6. doi: 10.1016/j.cbi.2016.07.009.

Rathinam A, Pari L. Myrtenal alleviates hyperglycaemia, hyperlipidaemia and improves pancreatic insulin level in STZ-induced diabetic rats. Pharm Biol. 2016;54(11):2521-7. doi: 10.3109/13880209.2016.1168852.

Corin K, Baaske P, Geissler S, Wienken CJ, Duhr S, Braun D, et al. Structure and function analyses of the purified GPCR human vomeronasal type 1 receptor 1. Sci Rep. 2011;1:172. doi: 10.1038/srep00172.

National Center for Biotechnology Information. PubChem Compound Database; CID=61130, https://pubchem.ncbi.nlm.nih.gov/compound/61130 (accessed Jan. 23, 2019). Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Myrtenal

Avgustinovich DF, Fomina MK, Suslov EV, Tolstikova TG, Volcho KP, Salakhutdinov NF. Effect of 2-aminoadamantane derivatives on behavior of mice in a modified light/dark test. Bull Exp Biol Med. 2014;158(2):213-8. doi: 10.1007/s10517-014-2725-4.

Miraj S. A review study of therapeutic effect of Myrtus communis. Der Pharm Lett. 2016;8(9):281-5.

Walle M, Walle B, Zerihun L, Makonnen E. Sedative-hypnotic like effect of the essential oil from the leaves of Myrtus Communis on mice. Am J Biomed Life Sci. 2014, 2(4):70-7. doi: 10.11648/j.ajbls.20140204.12.

Moreira MR, Salvadori MG, de Almeida AA, de Sousa DP, Jordán J, Satyal P, et al. Anxiolytic-like effects and mechanism of (-)-myrtenol: a monoterpene alcohol. Neurosci Lett. 2014;579:119-24. doi: 10.1016/j.neulet.2014.07.007.

Stoeva S, Georgieva M, Dragomanova S, Tancheva L. Study of the sedative-hypnotic and anxiolytic properties of myrtenal. Scr Sci Pharm. 2017; 4(Suppl 2):12.

Kaufmann D, Dogra AK, Wink M. Myrtenal inhibits acetylcholinesterase, a known Alzheimer target. J Pharm Pharmacol. 2011; 63(10):1368-71. doi: 10.1111/j.2042-7158.2011.01344.x.

Dragomanova S, Tancheva L, Georgieva M, Georgieva A, Dishovsky C, Stoeva S, et al. Effect of monoterpene myrtenal on experimental dementia in mice. 31st International Conference of Alzheimer’s Disease, 24-26 April 2016, Budapest, Hungary. Available from: https://www.alz.co.uk/ADI-conference-2016

Dragomanova S, Klisurov R, Georgieva M, Lazarova M, Dishovsky C, Kalfin R, et al. Effect of myrtenal on social behavior and memory of rats. 10th Congress of Toxicology in Developing Countries (CTDC10), 18-21 April, 2018, Belgrade, Serbia. Available from: http://www.ctdc10.rs/

Dragomanova S, Tancheva L, Georgieva M, Klisurov R, Lazarova M, Alexandrova A, et al. Study on the mechanism of neuroprotective effect of myrtenal on rats with experimental dementia. AAIC, 2017. Available from: www.alz.org/varna

Dragomanova S, Tancheva L, Georgieva M, Georgieva A, Stoeva S, Kalfin R. Antioxidant mechanism in the preventive effect of myrtenal on Alzheimer’s disease progression on experimental mouse model. European College of Neuropsychopharmacology, Amsterdam, The Nederlands, 2015, Abstract book of ECNP 2015. 2015; 25(Suppl. 2):S578–9. doi: 10.1016/S0924-977X(15)30812-9. Available from: http://www.europeanneuropsychopharmacology.com/action/showMultipleAbstracts?prg140729=1625c197-54a1-485b-b5ef-777aeafd6bac

Klisurov R, Dragomanova S, Tancheva L, Kalfin R. Study on the neuroprotective mechanisms of myrtenal on experimental rats. 2ND INTERNATIONAL BIOMEDICAL CONGRESS 2017, Sofia, Bulgaria. Abstract book. p. 39. Available from: https://ibc-sofia.org/




DOI: http://dx.doi.org/10.14748/ssp.v5i2.5614

Refbacks

About The Authors

Stela Dragomanova
Medical University of Varna
Bulgaria

Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy

 

Lyubka Tancheva
Institute of Neurobiology, Bulgarian Academy of Sciences
Bulgaria

Marieta Georgieva
Medical University of Varna

Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy

Font Size


|