Scientific Online Resource System

Annual for Hospital Pharmacy

Potential Drug-Drug Interactions With Tyrosine Kinase Inhibitors

Radeva-Ilieva Maya, Bogdan Kirilov, Kaloyan Georgiev

Abstract

There has been great progress in the treatment of tumors in recent years due to the introduction of new pharmacological approaches such as targeted therapy and immunotherapy. Targeted therapy is associated with suppressing the activity of specific targeting molecules in the cancer cells necessary for their growth, differentiation and survival. Of particular interest are tyrosine kinase inhibitors, proteins that play a major role in cell signaling, since overexpression or mutant forms of a large number of tyrosine kinases have been found in multiple tumors. Tyrosine kinase inhibitors block the activity of tyrosine kinases and disrupt intracellular signal transduction, thereby inhibiting the growth and development of cancer cells. Treatment with tyrosine kinase inhibitors is well tolerated and one of the main problems with their administration is the increased risk of drug interactions when co-administered with other drugs.
This review describes the potential drug-drug interactions that may occur during the treatment with certain tyrosine kinase inhibitors (ALK inhibitors, TRK inhibitors, EGFR inhibitors, FGFR inhibitors) used to treat rare and aggressive tumors. Careful selection of drugs that are co-administered with tyrosine kinase inhibitors is needed in order to avoid changes in their plasma concentrations that may lead to changes in their therapeutic and toxic effects.

Keywords

targeted therapy, tyrosine kinase inhibitors, drug interactions

Full Text


References

Arruebo M, Vilaboa N, Sáez-Gutierrez B, Lambea J, Tres A, Valladares M et al. Assessment of the evolution of cancer treatment therapies. Cancers (Basel). 2011;3(3):3279-330. doi:10.3390/cancers3033279.

Gerber DE. Targeted therapies: a new generation of cancer treatments. American Family Physician. 2008;77(3):311-9.

Bhullar KS, Lagarón NO, McGowan EM, Parmar I, Jha A, Hubbard BP et al. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer. 2018;17(1):48-. doi:10.1186/s12943-018-0804-2.

van Erp NP, Gelderblom H, Guchelaar H-J. Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treatment Reviews. 2009;35(8):692-706. doi:https://doi.org/10.1016/j.ctrv.2009.08.004.

Roninson IB. The role of the MDR1 (p-glycoprotein) gene in multidrug resistance in vitro and in vivo. Biochemical Pharmacology. 1992;43(1):95-102. doi:https://doi.org/10.1016/0006-2952(92)90666-7.

Nakanishi T, Ross DD. Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression. Chin J Cancer. 2012;31(2):73-99. doi:10.5732/cjc.011.10320.

Li W, Sparidans RW, Wang Y, Lebre MC, Beijnen JH, Schinkel AH. Oral coadministration of elacridar and ritonavir enhances brain accumulation and oral availability of the novel ALK/ROS1 inhibitor lorlatinib. European Journal of Pharmaceutics and Biopharmaceutics. 2019;136:120-30. doi:https://doi.org/10.1016/j.ejpb.2019.01.016.

Lheureux S, Denoyelle C, Ohashi PS, De Bono JS, Mottaghy FM. Molecularly targeted therapies in cancer: a guide for the nuclear medicine physician. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):41-54. doi:10.1007/s00259-017-3695-3.

Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nature Reviews Cancer. 2007;7:345. doi:10.1038/nrc2126.

Della Corte CM, Viscardi G, Di Liello R, Fasano M, Martinelli E, Troiani T et al. Role and targeting of anaplastic lymphoma kinase in cancer. Mol Cancer. 2018;17(1):30-. doi:10.1186/s12943-018-0776-2.

Huang H. Anaplastic Lymphoma Kinase (ALK) Receptor Tyrosine Kinase: A Catalytic Receptor with Many Faces. Int J Mol Sci. 2018;19(11):3448. doi:10.3390/ijms19113448.

Wu J, Savooji J, Liu D. Second- and third-generation ALK inhibitors for non-small cell lung cancer. Journal of Hematology & Oncology. 2016;9(1):19. doi:10.1186/s13045-016-0251-8.

Muller IB, de Langen AJ, Giovannetti E, Peters GJ. Anaplastic lymphoma kinase inhibition in metastatic non-small cell lung cancer: clinical impact of alectinib. Onco Targets Ther. 2017;10:4535-41. doi:10.2147/OTT.S109493.

Pfizer Labs. FULL PRESCRIBING INFORMATION. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/202570s021lbl.pdf: Reference ID: 4127887; 2017.

Novartis Pharma GmbH. SUMMARY OF PRODUCT CHARACTERISTICS. https://www.ema.europa.eu/en/documents/product-information/zykadia-epar-product-information_en.pdf 2017.

Rothenstein JM, Letarte N. Managing treatment-related adverse events associated with Alk inhibitors. Curr Oncol. 2014;21(1):19-26. doi:10.3747/co.21.1740.

Nix NM, Brown KS. Ceritinib for ALK-Rearrangement-Positive Non-Small Cell Lung Cancer. J Adv Pract Oncol. 2015;6(2):156-60.

Takeda Pharma A/S. SUMMARY OF PRODUCT CHARACTERISTICS. https://www.ema.europa.eu/en/documents/product-information/alunbrig-epar-product-information_en.pdf 2018.

Pfizer Labs. FULL PRESCRIBING INFORMATION https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210868s000lbl.pdf Reference ID: 4344940; 2018.

Roche Pharma AG. SUMMARY OF PRODUCT CHARACTERISTICS. https://www.ema.europa.eu/en/documents/product-information/alecensa-epar-product-information_en.pdf 2017.

Hirota T, Muraki S, Ieiri I. Clinical Pharmacokinetics of Anaplastic Lymphoma Kinase Inhibitors in Non-Small-Cell Lung Cancer. Clinical Pharmacokinetics. 2019;58(4):403-20. doi:10.1007/s40262-018-0689-7.

Katayama R. Drug resistance in anaplastic lymphoma kinase-rearranged lung cancer. Cancer Science. 2018;109(3):572-80. doi:10.1111/cas.13504.

Drilon A, Nagasubramanian R, Blake JF, Ku N, Tuch BB, Ebata K et al. A Next-Generation TRK Kinase Inhibitor Overcomes Acquired Resistance to Prior TRK Kinase Inhibition in Patients with TRK Fusion-Positive Solid Tumors. Cancer Discov. 2017;7(9):963-72. doi:10.1158/2159-8290.CD-17-0507.

Khotskaya YB, Holla VR, Farago AF, Mills Shaw KR, Meric-Bernstam F, Hong DS. Targeting TRK family proteins in cancer. Pharmacology & Therapeutics. 2017;173:58-66. doi:https://doi.org/10.1016/j.pharmthera.2017.02.006.

Ricciuti B, Genova C, Crinò L, Libra M, Leonardi GC. Antitumor activity of larotrectinib in tumors harboring NTRK gene fusions: a short review on the current evidence. Onco Targets Ther. 2019;12:3171-9. doi:10.2147/OTT.S177051.

Loxo Oncology. FULL PRESCRIBING INFORMATION. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210861Orig1s000_21171Orig1s000Lbl.pdf: Reference ID: 4354324; 11.2018.

Akamine T, Toyokawa G, Tagawa T, Yamazaki K, Seto T, Takeo S et al. Lorlatinib for the treatment of patients with non-small cell lung cancer. Drugs of Today. 2019;55:107. doi:10.1358/dot.2019.55.2.2927983.

Sparidans RW, Li W, Schinkel AH, Beijnen JH. Bioanalytical assay for the novel TRK inhibitor selitrectinib in mouse plasma and tissue homogenates using liquid chromatography-tandem mass spectrometry. Journal of Chromatography B. 2019;1122-1123:78-82. doi:https://doi.org/10.1016/j.jchromb.2019.05.026.

Herbst RS. Review of epidermal growth factor receptor biology. International Journal of Radiation Oncology*Biology*Physics. 2004;59(2, Supplement):S21-S6. doi:https://doi.org/10.1016/j.ijrobp.2003.11.041.

Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012;16(1):15-31. doi:10.1517/14728222.2011.648617.

Oda K, Matsuoka Y, Funahashi A, Kitano H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol. 2005;1:2005.0010-2005.0010. doi:10.1038/msb4100014.

Takeda M, Nakagawa K. First- and Second-Generation EGFR-TKIs Are All Replaced to Osimertinib in Chemo-Naive EGFR Mutation-Positive Non-Small Cell Lung Cancer? Int J Mol Sci. 2019;20(1):146. doi:10.3390/ijms20010146.

OSI Pharmaceuticals Inc. FULL PRESCRIBING INFORMATION https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021743s14s16lbl.pdf2010.

AstraZeneca Pharmaceuticals LP. FULL PRESCRIBING INFORMATION https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/206995s003lbl.pdf Reference ID: 4310729 2018.

AstraZeneca Pharmaceuticals. FULL PRESCRIBING INFORMATION. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/208065s008lbl.pdf 2018.

Smith J. Erlotinib: Small-molecule targeted therapy in the treatmentof non-small-cell lung cancer. Clinical Therapeutics. 2005;27(10):1513-34. doi:https://doi.org/10.1016/j.clinthera.2005.10.014.

Kucharczuk CR, Ganetsky A, Vozniak JM. Drug-Drug Interactions, Safety, and Pharmacokinetics of EGFR Tyrosine Kinase Inhibitors for the Treatment of Non-Small Cell Lung Cancer. J Adv Pract Oncol. 2018;9(2):189-200.

Pfizer Europe MA EEIG. FULL PRESCRIBING INFORMATION https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211288s000lbl.pdf Reference ID: 4327054 2018.

Peters S, Zimmermann S, Adjei AA. Oral epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small cell lung cancer: Comparative pharmacokinetics and drug–drug interactions. Cancer Treatment Reviews. 2014;40(8):917-26. doi:https://doi.org/10.1016/j.ctrv.2014.06.010.

Gao X, Le X, Costa DB. The safety and efficacy of osimertinib for the treatment of EGFR T790M mutation positive non-small-cell lung cancer. Expert Rev Anticancer Ther. 2016;16(4):383-90. doi:10.1586/14737140.2016.1162103.

Wind S, Schnell D, Ebner T, Freiwald M, Stopfer P. Clinical Pharmacokinetics and Pharmacodynamics of Afatinib. Clinical pharmacokinetics. 2017;56(3):235-50. doi:10.1007/s40262-016-0440-1.

Getov I, Grigorov E, Naseva E, Kojnov K. Model Pharmacoeconomic Study on Iressa® (Gefitinib) as a First Line Treatment of Non-Small Cell Lung Cancer at Stage IIIB/IV in EGFR Mutation Positive Bulgarian Patients. Biotechnol & Biotechnol Eq. 2013;27(1):3586-94. doi:10.5504/bbeq.2012.0050. .

Murtuza A, Bulbul A, Shen JP, Keshavarzian P, Woodward BD, Lopez-Diaz FJ et al. Novel Third-Generation EGFR Tyrosine Kinase Inhibitors and Strategies to Overcome Therapeutic Resistance in Lung Cancer. Cancer Research. 2019;79(4):689. doi:10.1158/0008-5472.CAN-18-1281.

Dai S, Zhou Z, Chen Z, Xu G, Chen Y. Fibroblast Growth Factor Receptors (FGFRs): Structures and Small Molecule Inhibitors. Cells. 2019;8(6):614. doi:10.3390/cells8060614.

Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol. 2015;4(3):215-66. doi:10.1002/wdev.176.

Janssen Pharmaceutical. FULL PRESCRIBING INFORMATION https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212018s000lbl.pdf Reference ID: 4418725; 2019.




DOI: http://dx.doi.org/10.14748/ahp.v5i1.6059

Refbacks

Article Tools
Email this article (Login required)
|