Scientific Online Resource System

Annual for Hospital Pharmacy

Role of the hospital pharmacist in preventing drug interactions in clinical practice

Maya Radeva-Ilieva


Drug-drug interactions (DDIs) represent a serious problem for current pharmacotherapy worldwide, as they may influence drug safety and/or therapeutic effect. In addition, they are often observed in hospitalized patients, who usually have to take several drugs simultaneously. Therefore, different strategies have been sought to detect and prevent dangerous interactions. The aim of the present work is to summarize the main mechanisms of DDIs and evaluate the role of hospital pharmacists in identifying and preventing potentially dangerous DDIs. According to the literature review, the most frequently reported clinically significant interactions are due to modulation of drug-metabolizing enzymes or transmembrane transporter activity. A deep understanding of drug pharmacology and toxicity is necessary to identify and prevent certain potential interactions. Hospital pharmacists can enhance patient safety through interventions such as medication reconciliation and patient education at discharge, reducing hospital readmissions and the risk of drug-related problems.


hospital pharmacist; drug-drug interactions (DDIs); pharmacokinetics; metabolism; transmembrane transporters

Full Text


Yuan J, Shen C, Wang C, et al. Assessment of Physician's Knowledge of Potential Drug-Drug Interactions: An Online Survey in China. Front. Med. 2021;8:650369. doi: 10.3389/fmed.2021.650369

Abubakar AR, Chedi BA, Mohammed KG, et al. Drug interaction and its implication in clinical practice and personalized medicine. Natl J Physiol Pharm Pharmacol. 2015;5:343-349.

Gonzaga de Andrade Santos TN, Mendonça da Cruz Macieira G, Cardoso Sodré Alves BM, et al. Prevalence of clinically manifested drug interactions in hospitalized patients: A systematic review and meta-analysis. PLoS One. 2020 Jul 1;15(7):e0235353. doi: 10.1371/journal.pone.0235353.

Peng Y, Cheng Z, Xie F. Evaluation of pharmacokinetic drug-drug interactions: A review of the mechanisms, in vitro and in silico approaches. Metabolites. 2021 Jan; 11(2): 75. doi:10.3390/metabo11020075

de Oliveira LM, Diel JDAC, Nunes A, et al. Prevalence of drug interactions in hospitalised elderly patients: a systematic review. Eur J Hosp Pharm. 2021 Jan; 28(1): 4-9. doi:10.1136/ejhpharm-2019-002111

Greenblatt DJ. Mechanisms and consequences of drug-drug interactions. Clin Pharmacol Drug Dev. 2017 Mar; 6(2): 118-124. doi:10.1002/cpdd.339

Malki MA, Pearson ER. Drug-drug-gene interactions and adverse drug reactions. Pharmacogenomics J. 2020 Jun; 20(3): 355-366. doi:10.1038/s41397-019-0122-0

Hochman J, Tang C, Prueksaritanont T. Drug-drug interactions related to altered absorption and plasma protein binding: theoretical and regulatory considerations, and an industry perspective. J Pharm Sci. 2015 Mar; 104(3): 916-929. doi:10.1002/jps.24306

Kamel A, Harriman S. Inhibition of cytochrome P450 enzymes and biochemical aspects of mechanism-based inactivation (MBI). Drug Discov Today Technol. 2013; 10(1): e177-e189. doi:10.1016/j.ddtec.2012.09.011

Ivanyuk A, Livio F, Biollaz J, et al. Renal drug transporters and drug interactions. Clin Pharmacokinet. 2017 Aug; 56(8): 825-892. doi:10.1007/s40262-017-0506-8

Niu J, Straubinger RM, Mager DE. Pharmacodynamic drug-drug interactions. Clin Pharmacol Ther. 2019 Jun; 105(6): 1395-1406. doi:10.1002/cpt.1434

Saputra EC, Huang L, Chen Y, et al. Combination therapy and the evolution of resistance: The theoretical merits of synergism and antagonism in cancer. Cancer Res. 2018 May; 78(9): 2419-2431. doi:10.1158/0008-5472.CAN-17-1201

European Medicines Agency. Guideline on the investigation of drug interactions. [Internet]. CPMP/EWP/560/95/Rev. 1 Corr. 2 [last updated 2015 Jun 03, cited 2023 Jul 20]. Available from:

Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Clinical Drug Interaction Studies — Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry. [Internet]. [last updated 2020 Jan 23, cited 2023 Jul 20]. Available from:

Food and Drug Administration, Center for Drug Evaluation and Research (CDER). In Vitro Drug Interaction Studies — Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry. [Internet]. [last updated 2020 Jan 23, cited 2023 Jul 20]. Available from:

Song Y, Li C, Liu G, et al. Drug-metabolizing cytochrome P450 enzymes have multifarious influences on treatment outcomes. Clin Pharmacokinet. 2021 May; 60(5): 585-601. doi:10.1007/s40262-021-01001-5

Янева И, Балабански В, Белчева В, Каранешева Т. Взаимодействия между растителни и лекарствени продукти на ниво цитохром Р 450. Годишник по болнична фармация. 2020 Окт; 6(1):33-41

Deodhar M, Al Rihani SB, Arwood MJ, et al. Mechanisms of CYP450 Inhibition: Understanding Drug-Drug Interactions Due to Mechanism-Based Inhibition in Clinical Practice. Pharmaceutics. 2020 Sep; 12(9): 846. doi:10.3390/pharmaceutics12090846

Zhang L, Zhang YD, Zhao P, et al. Predicting drug-drug interactions: an FDA perspective. AAPS J. 2009 Jun; 11(2): 300-306. doi:10.1208/s12248-009-9106-3

Mohutsky MA, Romeike A, Meador V, et al. Hepatic drug-metabolizing enzyme induction and implications for preclinical and clinical risk assessment. Toxicol Pathol. 2010 Aug; 38(5): 799-809. doi:10.1177/0192623310375099

Graziano S, Montana A, Zaami S, et al. Sildenafil-associated hepatoxicity: a review of the literature. Eur Rev Med Pharmacol Sci. 2017 Mar; 21(1 Suppl): 17-22.

Lepist EI, Ray AS. Beyond drug-drug interactions: effects of transporter inhibition on endobiotics, nutrients and toxins. Expert Opin Drug Metab Toxicol. 2017 Oct; 13(10): 1075-1087.


Morris ME, Rodriguez-Cruz V, Felmlee MA. SLC and ABC transporters: Expression, localization, and species differences at the blood-brain and the blood-cerebrospinal fluid barriers. AAPS J. 2017 Sep; 19(5): 1317-1331. doi:10.1208/s12248-017-0110-8

Ali Y, Shams T, Wang K, et al. The involvement of human organic anion transporting polypeptides (OATPs) in drug-herb/food interactions. Chin Med. 2020 Jul; 15: 71. doi:10.1186/s13020-020-00351-9

Knop J, Misaka S, Singer K, et al. Inhibitory effects of Green tea and (-)-epigallocatechin gallate on transport by OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2-K and P-glycoprotein. PLoS One. 2015 Oct; 10(10): e0139370. doi:10.1371/journal.pone.0139370

Goebel J, Chmielewski J, Hrycyna CA. The roles of the human ATP-binding cassette transporters P-glycoprotein and ABCG2 in multidrug resistance in cancer and at endogenous sites: future opportunities for structure-based drug design of inhibitors. Cancer Drug Resist. 2021 Aug; 4: 784-804. doi:10.20517/cdr.2021.19

Li Y, Meng Q, Yang M, et al. Current trends in drug metabolism and pharmacokinetics. Acta Pharm Sin B. 2019 Nov; 9(6): 1113-1144. doi:10.1016/j.apsb.2019.10.001

Olkkola KT, Ahonen J. Midazolam and other benzodiazepines. Handb Exp Pharmacol. 2008; (182): 335-360. doi:10.1007/978-3-540-74806-9_16

Carpenter M, Berry H, Pelletier AL. Clinically relevant drug-drug interactions in primary care. American family physician. 2019 May; 99(9): 558–564.

Изпълнителна Агенция по Лекарствата. Кратка характеристика на продукта. [Internet]. [cited 2023 Jul 22] Available from:

Wang ZY, Chen M, Zhu LL, et al. Pharmacokinetic drug interactions with clopidogrel: updated review and risk management in combination therapy. Ther Clin Risk Manag. 2015 Mar; 11: 449-467. doi:10.2147/TCRM.S80437

Tisdale JE. Drug-induced QT interval prolongation and torsades de pointes: Role of the pharmacist in risk assessment, prevention and management. Can Pharm J (Ott). 2016 May; 149(3): 139-152. doi:10.1177/1715163516641136

Wang Y, Bahar MA, Jansen AME, et al. Improving antibacterial prescribing safety in the management of COPD exacerbations: systematic review of observational and clinical studies on potential drug interactions associated with frequently prescribed antibacterials among COPD patients. J Antimicrob Chemother. 2019 Oct; 74(10): 2848-2864. doi:10.1093/jac/dkz221

Das B, Ramasubbu SK, Kumar B, et al. Top 20 drug - drug interactions, polypharmacy and analysis of the nature of risk factors due to QT interval prolonging drug use in elderly psychiatry outpatients. J Family Med Prim Care. 2020 Dec; 9(12): 6023-6040. doi:10.4103/jfmpc.jfmpc_1060_20

Foy M, Sperati CJ, Lucas GM, et al. Drug interactions and antiretroviral drug monitoring. Curr HIV/AIDS Rep. 2014 Sep; 11(3): 212-222. doi:10.1007/s11904-014-0212-1

European Medicines Agency. Summary of product characteristics. [Internet]. [cited 2023 Jul 22] Available from:

Fernandes BD, Almeida PHRF, Foppa AA, et al. Pharmacist-led medication reconciliation at patient discharge: A scoping review. Res Social Adm Pharm. 2020 May;16(5):605-613. doi: 10.1016/j.sapharm.2019.08.001.

Barnsteiner JH. Medication Reconciliation. In: Hughes RG, editor. Patient Safety and Quality: An Evidence-Based Handbook for Nurses. Rockville (MD): Agency for Healthcare Research and Quality (US); 2008 Apr. Chapter 38. Available from:

EAHP. European Statements of Hospital Pharmacy. Last update: 26 November 2021. Accessed on: 15 Jul 2023. Available from:

Mekonnen AB, McLachlan AJ, Brien JA. Effectiveness of pharmacist-led medication reconciliation programmes on clinical outcomes at hospital transitions: a systematic review and meta-analysis. BMJ Open. 2016 Feb 23;6(2):e010003. doi: 10.1136/bmjopen-2015-010003.

Missiakos O, Baysari MT, Day RO. Identifying effective computerized strategies to prevent drug-drug interactions in hospital: A user-centered approach. Int J Med Inform. 2015 Aug;84(8):595-600. doi: 10.1016/j.ijmedinf.2015.04.001.

Han K, Cao P, Wang Y, et al. A Review of Approaches for Predicting Drug-Drug Interactions Based on Machine Learning. Front Pharmacol. 2022 Jan 28;12:814858. doi: 10.3389/fphar.2021.814858.

Bach QN, Peasah SK, Barber E. Review of the Role of the Pharmacist in Reducing Hospital Readmissions. J Pharm Pract. 2019 Dec;32(6):617-624. doi: 10.1177/0897190018765500.