Cardiovascular disease (CVD) is a major health problem worldwide and is a leading cause of disability and mortality. They include coronary heart disease, cerebrovascular disease, peripheral vascular disease and arterial atherosclerosis. In the most cases, CVDs are polygenic multifactorial socially significant diseases and result from the impact of predisposing environmental factors, mainly related to unhealthy lifestyles, acting on a sensitive genetic terrain. This is due to specific genetic variants that control the regulation of the renin-angiotensin-aldosterone system (RAAS), lipid metabolism, caffeine metabolism, omega-3 fatty acids, homocysteine, etc. Such common genetic variants are designated as SNPs (Single Nucleotide Polymorphisms). The more predisposing variants an individual carries, the more pronounced the genetic risk of developing CVD. Such genetic variations are: variations in the ACE (insertion/deletion—I/D) and AGT (C-344T) genes of the RAAS; variations in the ApoE gene (Apo E2, E3 and E4) associated with cholesterol metabolism, genetic polymorphism C3175G in the gene encoding apolipoprotein C—APOC3; CETP gene with polymorphism rs708272, 279 G>A, associated with high-density cholesterol metabolism; lipoprotein lipase (LPL) gene and polymorphism 1595C>G (Ser447X); a polymorphism in CYP1A2 associated with caffeine sensitivity; polymorphism rs174537 G>T in FADS1 involved in polyunsaturated fatty acid metabolism, and polymorphisms in MTHFR (677 C>T and 1298 A>C) associated with homocysteine metabolism.
Rigat, B., et al., An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest, 1990. 86(4): p. 1343-6.
Guo, D.F., et al., The angiotensin II type 1 receptor and receptor-associated proteins. Cell Res, 2001. 11(3): p. 165-80.
Costerousse, O., et al., Angiotensin I-converting enzyme in human circulating mononuclear cells: genetic polymorphism of expression in T-lymphocytes. Biochem J, 1993. 290 ( Pt 1)(Pt 1): p. 33-40.
Lindpaintner, K., et al., Absence of association or genetic linkage between the angiotensin-converting-enzyme gene and left ventricular mass. N Engl J Med, 1996. 334(16): p. 1023-8.
Lindpaintner, K., et al., A prospective evaluation of an angiotensin-converting-enzyme gene polymorphism and the risk of ischemic heart disease. N Engl J Med, 1995. 332(11): p. 706-11.
Castellano, M., et al., Angiotensin-converting enzyme I/D polymorphism and arterial wall thickness in a general population. The Vobarno Study. Circulation, 1995. 91(11): p. 2721-4.
McLaughlin, K.J., et al., The role of genetic polymorphisms of angiotensin-converting enzyme in the progression of renal diseases. Hypertension, 1996. 28(5): p. 912-5.
Cambien, F., et al., Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature, 1992. 359(6396): p. 641-4.
Sayed-Tabatabaei, F.A., et al., Angiotensin-converting enzyme gene polymorphism and carotid artery wall thickness: a meta-analysis. Stroke, 2003. 34(7): p. 1634-9.
Srivastava, S., et al., Association of polymorphisms in angiotensin and aldosterone synthase genes of the renin-angiotensin-aldosterone system with high-altitude pulmonary edema. J Renin Angiotensin Aldosterone Syst, 2012. 13(1): p. 155-60.
Ilveskoski, E., et al., Age-dependent association of apolipoprotein E genotype with coronary and aortic atherosclerosis in middle-aged men: an autopsy study. Circulation, 1999. 100(6): p. 608-13.
Mahley, R.W., Y. Huang, and S.C. Rall, Jr., Pathogenesis of type III hyperlipoproteinemia (dysbetalipoproteinemia). Questions, quandaries, and paradoxes. J Lipid Res, 1999. 40(11): p. 1933-49.
Mahley, R.W., Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. J Mol Med (Berl), 2016. 94(7): p. 739-46.
Kataoka, S., et al., Apolipoprotein E polymorphism in American Indians and its relation to plasma lipoproteins and diabetes. The Strong Heart Study. Arterioscler Thromb Vasc Biol, 1996. 16(8): p. 918-25.
Eichner, J.E., et al., Apolipoprotein E polymorphism and cardiovascular disease: a HuGE review. Am J Epidemiol, 2002. 155(6): p. 487-95.
Lahoz, C., et al., Apolipoprotein E genotype and cardiovascular disease in the Framingham Heart Study. Atherosclerosis, 2001. 154(3): p. 529-37.
Bosse, Y., et al., Genome-wide linkage scan reveals multiple susceptibility loci influencing lipid and lipoprotein levels in the Quebec Family Study. J Lipid Res, 2004. 45(3): p. 419-26.
Zhang, T., et al., HDL-associated apoCIII plays an independent role in predicting postprandial hypertriglyceridemia. Clin Biochem, 2020. 79: p. 14-22.
Jong, M.C., M.H. Hofker, and L.M. Havekes, Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol, 1999. 19(3): p. 472-84.
Xu, S., et al., Apolipoproteins of HDL can directly mediate binding to the scavenger receptor SR-BI, an HDL receptor that mediates selective lipid uptake. J Lipid Res, 1997. 38(7): p. 1289-98.
Lin, B., et al., Association between apolipoprotein C3 Sst I, T-455C, C-482T and C1100T polymorphisms and risk of coronary heart disease. BMJ Open, 2014. 4(1): p. e004156.
Wei, J., et al., Characterization of a hypertriglyceridemic transgenic miniature pig model expressing human apolipoprotein CIII. FEBS J, 2012. 279(1): p. 91-9.
Wang, C.S., et al., Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J Clin Invest, 1985. 75(2): p. 384-90.
Abd El-Aziz, T.A., R.H. Mohamed, and R.M. Hashem, Association of lipoprotein lipase and apolipoprotein C-III genes polymorphism with acute myocardial infarction in diabetic patients. Mol Cell Biochem, 2011. 354(1-2): p. 141-50.
Song, Y., et al., Associations of the APOC3 rs5128 polymorphism with plasma APOC3 and lipid levels: a meta-analysis. Lipids Health Dis, 2015. 14: p. 32.
Svetoslav Tsenov, E.G., Valentina Belcheva Unmet medical needs in high-risk cardiovascular patients with familial hyperholesterolemia. J of IMAB, 2021. 27(2): p. 3652-3657.
Tall, A.R., Plasma cholesteryl ester transfer protein. J Lipid Res, 1993. 34(8): p. 1255-74.
Barter, P.J., G.J. Hopkins, and G.D. Calvert, Transfers and exchanges of esterified cholesterol between plasma lipoproteins. Biochem J, 1982. 208(1): p. 1-7.
Goldberg, D.I., W.F. Beltz, and R.C. Pittman, Evaluation of pathways for the cellular uptake of high density lipoprotein cholesterol esters in rabbits. J Clin Invest, 1991. 87(1): p. 331-46.
Raposo, H.F., et al., Fibrates and fish oil, but not corn oil, up-regulate the expression of the cholesteryl ester transfer protein (CETP) gene. J Nutr Biochem, 2014. 25(6): p. 669-74.
Guo, S.X., et al., Associations of Cholesteryl Ester Transfer Protein TaqIB Polymorphism with the Composite Ischemic Cardiovascular Disease Risk and HDL-C Concentrations: A Meta-Analysis. Int J Environ Res Public Health, 2016. 13(9).
Vargas-Alarcon, G., et al., CETP and LCAT Gene Polymorphisms Are Associated with High-Density Lipoprotein Subclasses and Acute Coronary Syndrome. Lipids, 2018. 53(2): p. 157-166.
Anagnostopoulou, K.K., et al., Sex-associated effect of CETP and LPL polymorphisms on postprandial lipids in familial hypercholesterolaemia. Lipids Health Dis, 2009. 8: p. 24.
Wuni, R., et al., A Nutrigenetic Update on CETP Gene-Diet Interactions on Lipid-Related Outcomes. Curr Atheroscler Rep, 2022. 24(2): p. 119-132.
Mehlig, K., et al., CETP TaqIB genotype modifies the association between alcohol and coronary heart disease: the INTERGENE case-control study. Alcohol, 2014. 48(7): p. 695-700.
Otarod, J.K. and I.J. Goldberg, Lipoprotein lipase and its role in regulation of plasma lipoproteins and cardiac risk. Curr Atheroscler Rep, 2004. 6(5): p. 335-42.
Beisiegel, U., W. Weber, and G. Bengtsson-Olivecrona, Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein. Proc Natl Acad Sci U S A, 1991. 88(19): p. 8342-6.
Burnett, J.R., A.J. Hooper, and R.A. Hegele, Familial Lipoprotein Lipase Deficiency, in GeneReviews((R)), M.P. Adam, et al., Editors. 1993: Seattle (WA).
Wittrup, H.H., A. Tybjaerg-Hansen, and B.G. Nordestgaard, Lipoprotein lipase mutations, plasma lipids and lipoproteins, and risk of ischemic heart disease. A meta-analysis. Circulation, 1999. 99(22): p. 2901-7.
Margaglione, M., et al., PAI-1 plasma levels in a general population without clinical evidence of atherosclerosis: relation to environmental and genetic determinants. Arterioscler Thromb Vasc Biol, 1998. 18(4): p. 562-7.
Rip, J., et al., Lipoprotein lipase S447X: a naturally occurring gain-of-function mutation. Arterioscler Thromb Vasc Biol, 2006. 26(6): p. 1236-45.
Sagoo, G.S., et al., Seven lipoprotein lipase gene polymorphisms, lipid fractions, and coronary disease: a HuGE association review and meta-analysis. Am J Epidemiol, 2008. 168(11): p. 1233-46.
Fulgoni, V.L., 3rd, D.R. Keast, and H.R. Lieberman, Trends in intake and sources of caffeine in the diets of US adults: 2001-2010. Am J Clin Nutr, 2015. 101(5): p. 1081-7.
O'Keefe, J.H., et al., Effects of habitual coffee consumption on cardiometabolic disease, cardiovascular health, and all-cause mortality. J Am Coll Cardiol, 2013. 62(12): p. 1043-1051.
Riksen, N.P., G.A. Rongen, and P. Smits, Acute and long-term cardiovascular effects of coffee: implications for coronary heart disease. Pharmacol Ther, 2009. 121(2): p. 185-91.
Rasmussen, B.B., et al., The interindividual differences in the 3-demthylation of caffeine alias CYP1A2 is determined by both genetic and environmental factors. Pharmacogenetics, 2002. 12(6): p. 473-8.
Cornelis, M.C., et al., Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA, 2006. 295(10): p. 1135-41.
Sachse, C., et al., Functional significance of a C-->A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol, 1999. 47(4): p. 445-9.
Cornelis, M.C., et al., Genome-wide association study of caffeine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior. Hum Mol Genet, 2016. 25(24): p. 5472-5482.
Palatini, P., et al., Association of coffee consumption and CYP1A2 polymorphism with risk of impaired fasting glucose in hypertensive patients. Eur J Epidemiol, 2015. 30(3): p. 209-17.
Cordain, L., et al., Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr, 2005. 81(2): p. 341-54.
Ferrante, A.W., Jr., Obesity-induced inflammation: a metabolic dialogue in the language of inflammation. J Intern Med, 2007. 262(4): p. 408-14.
Smith, W.L., The eicosanoids and their biochemical mechanisms of action. Biochem J, 1989. 259(2): p. 315-24.
Lemaitre, R.N., et al., Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium. PLoS Genet, 2011. 7(7): p. e1002193.
Hong, S.H., et al., Association of polymorphisms in FADS gene with age-related changes in serum phospholipid polyunsaturated fatty acids and oxidative stress markers in middle-aged nonobese men. Clin Interv Aging, 2013. 8: p. 585-96.
Froese, D.S., et al., Mutation Update and Review of Severe Methylenetetrahydrofolate Reductase Deficiency. Hum Mutat, 2016. 37(5): p. 427-38.
Goyette, P., et al., Human methylenetetrahydrofolate reductase: isolation of cDNA mapping and mutation identification. Nat Genet, 1994. 7(4): p. 551.
Rosenberg, N., et al., The frequent 5,10-methylenetetrahydrofolate reductase C677T polymorphism is associated with a common haplotype in whites, Japanese, and Africans. Am J Hum Genet, 2002. 70(3): p. 758-62.