Slater EC. Mechanism of phosphorylation in the respiratory chain. Nature 1953; 172: 975-978. DOI:10.1038/172975a0
Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 1961; 191: 144-148. DOI:10.1038/191144a0
Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev 1966; 41: 445-501. DOI: 10.1016/j.bbabio.2011.09.018.
Ling GN. Oxidative phosphorylation and mitochondrial physiology: a critical review of chemiosmotic theory, and reinterpretation by the association-induction hypothesis. Physiol Chem Phys 1981; 13: 29-96.
Slater E. An evaluation of the Mitchell hypothesis of chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Eur J Biochem 1967; 1: 317-326. DOI:10.1007/978-3-662-25813-2_43.
Slater E. The mechanism of the conservation of energy of biological oxidations. Eur J Biochem 1987; 166: 489-504. DOI:10.1111/j.1432-1033.1987.tb13542.x
Wainio W. An assessment of the chemiosmotic hypothesis of mitochondrial energy transduction. In: Int Rev Cytol 1985; 96: 29-50. DOI:10.1016/S0074-7696(08)60593-8.
Boyer PD. Phosphohistidine. Science 1963; 141: 1147-1153. DOI:10.1126/science.141.3586.1147.
Boyer PD. Molecular motors: What makes ATP synthase spin? Nature 1999; 402: 247-249. DOI:10.1038/46193.
Abrahams JP, Leslie AG, Lutter R, Walker JE. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 1994; 370: 621-628. DOI:10.1038/370621a0.
Stock D, Leslie AG, Walker JE. Molecular architecture of the rotary motor in ATP synthase. Science 1999; 286: 1700-1705. DOI: 10.1126/science.286.5445.1700.
Walker JE, Saraste M, Runswick MJ, Gay NJ. Distantly related sequences in the alphaand betasubunits of ATP synthase, myosin, kinases and other ATP requiring enzymes and a common nucleotide binding fold. EMBO J 1982; 1: 945-951. DOI:10.1002/j.1460-2075.1982.tb01276.x
Manoj KM. Debunking chemiosmosis and proposing murburn concept as the operative principle for cellular respiration. Biomed Rev 2017; 28: 31-48. DOI:10.14748/bmr.v28.4450.
Manoj KM, Gideon DA, Jacob VD. Murburn scheme for mitochondrial thermogenesis. Biomed Rev 2018; 29: 73-82. DOI:10.14748/bmr.v29.5852.
Manoj KM. Aerobic respiration: Criticism of the proton-centric explanation involving rotary adenosine triphosphate synthesis, chemiosmosis principle, proton pumps and electron transport chain. Biochem Insights 2018; 11: 1178626418818442. DOI:10.1177/1178626418818442.
Manoj KM, Parashar A, Jacob VD, Ramasamy S. Aero-bic respiration: proof of concept for the oxygen-centric murburn perspective. J Biomol Struct Dyn 2019; 37: 4542-4556. DOI:10.1080/07391102.2018.1552896.
Manoj KM, Ramasamy S, Parashar A, Soman V, Pakshirajan K. Murburn concept explains the acutely lethal effect of cyanide. bioRxiv 2019; 555888. DOI:10.1101/555888.
Manoj KM, Soman V, Jacob VD, Parashar A, Gideon DA, Kumar M, et al. Chemiosmotic and murburn explanations for aerobic respiration: Predictive capabilities, structure-function correlations and chemico-physical logic. Arch Biochem Biophys 2019; 676: 108128. DOI:10.1016/j. abb.2019.108128.
Kuter KZ, Olech Ł, Dencher NA. Increased energetic demand supported by mitochondrial electron transfer chain and astrocyte assistance is essential to maintain the compensatory ability of the dopaminergic neurons in an animal model of early Parkinson’s disease. Mitochondrion 2019; 47: 227-237. DOI:10.1016/j.mito.2018.12.002.
Refojo PN, Sena FV, Calisto F, Sousa FM, Pereira MM. The plethora of membrane respiratory chains in the phyla of life. Adv Microb Physiol 2019; 74: 331-414. DOI:10.1016/bs.ampbs.2019.03.002.
Ramírez-Camacho I, Flores-Herrera O, Zazueta C. The relevance of the supramolecular arrangements of the respiratory chain complexes in human diseases and aging. Mitochondrion 2019; 47: 266-272. DOI:10.1016/j. mito.2019.01.001.
Wang Y, Palmfeldt J, Gregersen N, Makhov AM, Conway JF, Wang M, et al. Mitochondrial fatty acid oxidation and the electron transport chain comprise a multifunctional mitochondrial protein complex. J Biol Chem 2019; 294: 12380-12391. DOI:10.1074/jbcRA119.008680.
Sazanov LA. A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat Rev Mol Cell Biol 2015; 16: 375-388. DOI:10.1038/nrm3997.
Franke JM, Raliski BK, Boggess SC, Natesan DV, Ko-retsky ET, Zhang P, et al. BODIPY Fluorophores for membrane potential imaging. J Am Chem Soc 2019; 141: 12824-12831. DOI:10.1021/jacs.9b05912.
Grenier V, Daws BR, Liu P, Miller EW. Spying on neuronal membrane potential with genetically targetable voltage indicators. J Am Chem Soc 2019; 141: 1349-1358. DOI:10.1021/jacs.8b11997.
Mills E, O’Neill LA. Not all mitochondrial cristae are the same: Hetero-potential in the inner mitochondrial membrane. Immunometabolism 2020; 2: e200003. DOI:10.20900/immunometab20200003.
Torday JS. The Singularity of nature. Prog Biophys Mol Bio 2019; 142: 23-31. DOI: 10.1016/j.pbiomolbio.2018.07.013.
Schoelmerich MC, Müller V. Energy conservation by a hydrogenase-dependent chemiosmotic mechanism in an ancient metabolic pathway. Proc Natl Acad Sci USA 2019; 116: 6329-6334. DOI:10.1073/pnas.1818580116.
Schlame M. Mitochondrial cristae as insulated transformers of metabolic energy. EMBO J 2019; 38: e103472. DOI:10.15252/embj.2019103472.
Crabbé A, Ostyn L, Staelens S, Rigauts C, Risseeuw M, Dhaenens M, et al. Host metabolites stimulate the bacterial proton motive force to enhance the activity of amino-glycoside antibiotics. PLoS Pathog 2019; 15: e1007697. DOI:10.1371/journal.ppat.1007697.
Collins JJ, Allison KR, Brynildsen MP. Proton-motive force stimulation to potentiate aminoglycoside antibiot-ics against persistent bacteria. 2019 US20170119805A1 (US Patent).
Magnowska Z, Jana B, Brochmann RP, Hesketh A, Lametsch R, De Gobba, et al. Carprofen-induced depletion of proton motive force reverses TetK-mediated doxycy-cline resistance in methicillin-resistant Staphylococcus pseudintermedius. Sci Rep 2019; 9: 1-14. DOI:10.1038/s41598-019-54091-4.
Wang Y, Qin Y, Zhang Y, Wu R, Li P. Antibacterial mechanism of plantaricin LPL-1, a novel class IIa bacteriocin against Listeria monocytogenes. Food control 2009; 97:87-93. DOI:10.1016/j.foodcont.2018.10.025.
Wu SC, Han F, Song MR, Chen S, Li Q, Zhang Q, et al. Natural flavones from Morus alba against methicillin-resistant Staphylococcus aureus via targeting the pro-ton motive force and membrane permeability. J Agric Food Chem 2019; 67: 10222-10234. DOI:10.1021/acs. jafc.9b01795.
Klionsky DJ, Brusilow WSA, Simoni RD. In vivo evidence for the role of the epsilon subunit as an inhibitor of the proton-translocating ATPase of Escherichia coli. J Bacteriol 1984; 160: 1055-1060.
Sturm A, Mollard V, Cozijnsen A, Goodman CD, McFadden GI. Mitochondrial ATP synthase is dispensable in blood-stage Plasmodium berghei rodent malaria but essential in the mosquito phase. Proc Nat Acad Sci USA 2015; 112: 10216-10223. DOI: 10.1073/pnas.1423959112.
Manoj KM. Murburn concept: a paradigm shift in cellular metabolism and physiology. Biomol Concepts 2020 (In Press).
Manoj KM. Oxygenic photosynthesis: Critiquing the standing explanations and proposing explorative solutions based in murburn concept. OSF Preprints 2019. DOI: 10.31219/osf.io/3mzfp.
Manoj KM. The ubiquitous biochemical logic of murburn concept. Biomed Rev 2018; 29, 89-97. DOI:10.14748/bmr.v29.5854.
Jacob VD, Manoj KM. Are adipocytes and ROS villains, or are they protagonists in the drama of life? The murburn perspective. Adipobiology 2019; 10:1-10.