Scientific Online Resource System

Biomedical Reviews

Acute stimulation of vagus nerve modulates brain neurotrophins, and stimulates neuronal plasticity in the hippocampus of adult male rats

Pamela Rosso, Marco Fiore, Elena Fico, Angela Iannitelli, Paola Tirassa

Abstract

The present study was aimed at evaluating whether single intermittent acute cervical vagus nerve stimulation (ACVS), pro-vided at a frequency which exhibits a clinical efficacy, may influence brain neurotrophins and hippocampal plasticity.
With this purpose, the brain of adult male rats undergoing ACVS was used to analyze the expression of Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF) in brain areas known to synthetize these growth factors, and the expression the neural cell adhesion molecule (NCAM), the synaptophysin (SYP) and biosynthetic GABA (GAD67) in the hippocampus.
The effects of ACVS on NGF and BDNF protein and mRNA in hippocampus, hypothalamus and cortex two hours after stimulation were shown to be dependent on the frequencies of ACVS stimulation. Prolonged (three days post stimulation) modifications of NGF and BDNF were also observed in the hippocampus of ACVS rats. An early enhancement of the plasticity markers NCAM, SYP and GAD67 was also found in ACVS hippocampus. Three days after stimulation, NCAM and GAD67 levels were still higher than controls. Immunohistochemistry confirms the stimulatory effects of ACVS on GABA showing an increase in GAD67-positive cells in the dentate gyrus and CA3 hippocampal areas. This study shows that ACVS affects brain NGF and BDNF synthesis in a frequency-dependent manner. Neurotrophins changes are associated with increased hippocampal plasticity, as demonstrated by the observed molecular and morphological modifications. These findings support the role of brain neurotrophins in the ACVS mechanism of action.


Keywords

vagus nerve stimulation, NGF, BDNF, NCAM, GABA, psychiatry

Full Text


References

Groves DA, Brown VJ. Vagal nerve stimulation: A review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev 2005;29:493–500. doi:10.1016/j.neubiorev.2005.01.004.

Clark KB, Krahl SE, Smith DC, Jensen RA. Post-training unilateral vagal stimulation enhances retention performance in the rat. Neurobiol Learn Mem 1995;63:213–216. doi:10.1006/nlme.1995.1024.

Clark KB, Smith DC, Hassert DL, Browning RA, Naritoku DK, Jensen RA. Posttraining electrical stimulation of vagal afferents with concomitant vagal efferent inactivation enhances memory storage processes in the rat. Neurobiol Learn Mem 1998;70:364–373. doi:10.1006/ nlme.1998.3863.

Clark KB, Naritoku DK, Smith DC, Browning RA, Jensen RA. Enhanced recognition memory following vagus nerve stimulation in human subjects. Nat Neurosci 1999;2:94–98. doi:10.1038/4600.

Sjögren MJC, Hellström PTO, Jonsson MAG, Runnerstam M, Silander HC, Ben-Menachem E. Cognition-enhancing effect of vagus nerve stimulation in patients with Alzheimer’s disease: A pilot study. J Clin Psychiatry 2002;63:972–980. doi:10.4088/JCP.v63n1103.

Chase MH, Sterman MB, Clemente CD. Cortical and subcortical patterns of response to afferent vagal stimulation. Exp Neurol 1966;16:36–49. doi:10.1016/0014- 4886(66)90084-7.

Radna RJ, MacLean PD. Vagal elicitation of respiratory-type and other unit responses in basal limbic structures of squirrel monkeys. Brain Res 1981;213:45–61. doi:10.1016/0006-8993(81)91247-6.

Barnes A, Duncan R, Chisholm JA, Lindsay K, Patterson J, Wyper D. Investigation into the mechanisms of vagus nerve stimulation for the treatment of intractable epilepsy, using 99mTc-HMPAO SPET brain images. Eur J Nucl Med Mol Imaging 2003;30:301–305. doi:10.1007/s00259-002-1026-8.

Dedeurwaerdere S, Cornelissen B, Van Laere K, Vonck K, Achten E, Slegers G, et al. Small animal positron emission tomography during vagus nerve stimulation in rats: A pilot study. Epilepsy Res 2005;67:133–141. doi:10.1016/j. eplepsyres.2005.09.008.

Ghacibeh GA, Shenker JI, Shenal B, Uthman BM, Heilman KM. The influence of vagus nerve stimulation on memory. Cogn Behav Neurol 2006;19:119–122. doi:10.1097/01.wnn.0000213908.34278.7d.

Zuo Y, Smith DC, Jensen RA. Vagus nerve stimulation potentiates hippocampal LTP in freely-moving rats. Physiol Behav 2007;90:583–589. doi:10.1016/j.phys- beh.2006.11.009.

Ciafrè S, Carito V, Ferraguti G, Greco A, Ralli M, Tirassa P, et al. Nerve growth factor in brain diseases. Biomed Rev 2018;29:1–16. doi:10.14748/bmr.v29.5845.

Carito V, Ceccanti M, Ferraguti G, Coccurello R, Ciafrè S, Tirassa P, et al. NGF and BDNF Alterations by Prenatal Alcohol Exposure. Curr Neuropharmacol 2019;17:308–317. doi:10.2174/1570159x15666170825101308.

Gioiosa L, Iannitelli A, Aloe L. Stress, anxiety schizophrenia and neurotrophic factors: the pioneer studies with nerve growth factor. Riv Psichiatr 2009;44:88–94. doi:10.1708/420.4978.

Castrén E, Antila H. Neuronal plasticity and neurotrophic factors in drug responses. Mol Psychiatry 2017;22:1085–1095. doi:10.1038/mp.2017.61.

Tirassa P, Rosso P, Iannitelli A. Ocular nerve growth factor (NGF) and NGF eye drop application as paradigms to investigate NGF neuroprotective and reparative actions. Methods Mol Biol 2018, 1727:19–38. doi:10.1007/978- 1-4939-7571-6_2.

Follesa P, Biggio F, Gorini G, Caria S, Talani G, Dazzi L, et al. Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res 2007;1179:28–34. doi:10.1016/J. BRAINRES.2007.08.045.

Biggio F, Gorini G, Utzeri C, Olla P, Marrosu F, Mocchetti I, et al. Chronic vagus nerve stimulation induces neuronal plasticity in the rat hippocampus. Int J Neuropsychopharmacol 2009;12:1209–21. doi:10.1017/ S1461145709000200.

Henry TR, Bakay RAE, Pennell PB, Epstein CM, Votaw JR. Brain blood-flow alterations induced by therapeutic vagus nerve stimulation in partial epilepsy: II. Prolonged effects at high and low levels of stimulation. Epilepsia 2004;45:1064–1070. doi:10.1111/j.0013- 9580.2004.03104.x.

Woodbury DM, Woodbury JW. Effects of Vagal Stimulation on Experimentally Induced Seizures in Rats. Epilepsia 1990;31:S7–19. doi:10.1111/j.1528-1157.1990.tb05852.x.

Roosevelt RW, Smith DC, Clough RW, Jensen RA, Browning RA. Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Res 2006;1119:124– 132. doi:10.1016/j.brainres.2006.08.048.

Tozuka Y, Fukuda S, Namba T, Seki T, Hisatsune T. GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 2005;47:803–815. doi:10.1016/j.neuron.2005.08.023.

Ge S, Goh ELK, Sailor KA, Kitabatake Y, Ming GL, Song H. GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 2006;439:589–593. doi:10.1038/nature04404.

Walker BR, Easton A, Gale K. Regulation of limbic motor seizures by GABA and glutamate transmission in nucleus tractus solitarius. Epilepsia 1999;40:1051–1057. doi:10.1111/j.1528-1157.1999.tb00818.x.

Bari AA, Pouratian N. Brain imaging correlates of peripheral nerve stimulation. Surg Neurol Int 2012;3:S260-8. doi:10.4103/2152-7806.103016.

Henry TR, Votaw JR, Pennell PB, Epstein CM, Bakay RAE, Faber TL, et al. Acute blood flow changes and efficacy of vagus nerve stimulation in partial epilepsy. Neu- rology 1999;52:1166–1173. doi:10.1212/wnl.52.6.1166.

Krahl SE, Senanayake SS, Handforth A. Destruction of peripheral C-fibers does not alter subsequent vagus nerve stimulation-induced seizure suppression in rats. Epilepsia 2001;42:586–589. doi:10.1046/j.1528- 1157.2001.09700.x.

Lynch MA, Voss KL, Rodriguez J, Bliss TVP. Increase in synaptic vesicle proteins accompanies long-term potentiation in the dentate gyrus. Neuroscience 1994;60:1–5. doi:10.1016/0306-4522(94)90197-X.

Li S, Reinprecht I, Fahnestock M, Racine RJ. Activity-dependent changes in synaptophysin immunoreactivity in hippocampus, piriform cortex, and entorhinal cortex of the rat. Neuroscience 2002;115:1221–1229. doi:10.1016/ S0306-4522(02)00485-2.

Senkov O, Sun M, Weinhold B, Gerardy-Schahn R, Schachner M, Dityatev A. Polysialylated neural cell adhesion molecule is involved in induction of long-term potentiation and memory acquisition and consolidation in a fear-conditioning paradigm. J Neurosci 2006;26:10888– 109898. doi:10.1523/JNEUROSCI.0878-06.2006.

Stoenica L, Senkov O, Gerardy-Schahn R, Weinhold B, Schachner M, Dityatev A. In vivo synaptic plasticity in the dentate gyrus of mice deficient in the neural cell adhesion molecule NCAM or its polysialic acid. Eur J Neurosci 2006;23:2255–2264. doi:10.1111/j.1460- 9568.2006.04771.x.

Frick KM, Fernandez SM. Enrichment enhances spatial memory and increases synaptophysin levels in aged female mice. Neurobiol Aging 2003;24:615–626. doi:10.1016/S0197-4580(02)00138-0.

Marin R, Williams A, Hale S, Burge B, Mense M, Bauman R, et al. The effect of voluntary exercise exposure on histological and neurobehavioral outcomes after ischemic brain injury in the rat. Physiol Behav 2003;80:167–175. doi:10.1016/j.physbeh.2003.06.001.

Kronenberg G, Reuter K, Steiner B, Brandt MD, Jess- berger S, Yamaguchi M, et al. Subpopulations of Proliferating Cells of the Adult Hippocampus Respond Differently to Physiologic Neurogenic Stimuli. J Comp Neurol 2003;467:455–463. doi:10.1002/cne.10945.

Polo-Parada L, Bose CM, Plattner F, Landmesser LT. Distinct Roles of Different Neural Cell Adhesion Molecule (NCAM) Isoforms in Synaptic Maturation Revealed by Analysis of NCAM 180 kDa Isoform-Deficient Mice. J Neurosci 2004;24:1852–1864. doi:10.1523/JNEURO- SCI.4406-03.2004.

Porcher C, Medina I, Gaiarsa JL. Mechanism of BDNF modulation in GABAergic synaptic transmission in healthy and disease brains. Front Cell Neurosci 2018;12. doi:10.3389/fncel.2018.00273.

Kim J, Lee S, Kang S, Kim SH, Kim JC, Yang M, et al. Brain-derived neurotropic factor and GABAergic transmission in neurodegeneration and neuroregeneration. Neural Regen Res 2017;12:1733–1741. doi:10.4103/1673- 5374.217353.

Paulsen O, Moser EI. A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity. Trends Neurosci 1998;21:273–278. doi:10.1016/ S0166-2236(97)01205-8.

Gutiérrez R. The GABAergic phenotype of the “glutamatergic” granule cells of the dentate gyrus. Prog Neurobiol 2003;71:337–358. doi:10.1016/j.pneuro- bio.2003.11.004.

Neese SL, Sherill LK, Tan AA, Roosevelt RW, Browning RA, Smith DC, et al. Vagus nerve stimulation may protect GABAergic neurons following traumatic brain injury in rats: An immunocytochemical study. Brain Res 2007;1128:157–163. doi:10.1016/j.brainres.2006.09.073.

Marty S, Berninger B, Carroll P, Thoenen H. GABAergic stimulation regulates the phenotype of hippocampal interneurons through the regulation of brain-derived neurotrophic factor. Neuron 1996;16:565–570. doi:10.1016/ S0896-6273(00)80075-6.




DOI: http://dx.doi.org/10.14748/bmr.v30.6391

Refbacks

Article Tools
Email this article (Login required)
About The Authors

Pamela Rosso
National Research Council (CNR), Institute of Biochemistry and Cell Biology (IBBC), Rome
Italy

Marco Fiore
National Research Council (CNR), Institute of Biochemistry and Cell Biology (IBBC), Rome
Italy

Elena Fico
National Research Council (CNR), Institute of Biochemistry and Cell Biology (IBBC), Rome
Italy

Angela Iannitelli
Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila
Italy

Paola Tirassa
National Research Council (CNR), Institute of Biochemistry and Cell Biology (IBBC), Rome
Italy

Font Size


|