Ghenev PI, Aloe L, Kisheva AR, Singh M, Panayotov P, Fiore M, et al. QUO VADIS, ATHEROGENESIS? Part 1. Smooth muscle cell secretion – how foe becomes friend in the fight against the atherosclerotic plaque. Biomed Rev 2017; 28:134-138.
Chaldakov GN. George E. Palade lecture. Human body as a multicrine system, with special reference to cell protein secretion: From vascular smooth muscles to adipose tissue. Biomed Rev 2016; 27(VIII - XIX.
Yanev S, Fiore M, Hinev A, Ghenev PI, Hristova MG, Panayotov P, et al. From antitubulins to trackins. Biomed Rev 2016; 27:59-67.
Ross R. Atherosclerosis - an inflammatory disease. N Engl J Med 1999; 340(2): 115-126. [DOI: 10.1056/NEJM199901143400207]
Chaldakov GN. Antitubulins - a new therapeutic approach for atherosclerosis? Atherosclerosis 1982; 44(3): 385-390.[DOI: 10.1016/0021-9150(82)90013-2]
Chaldakov GN, Vankov VN. Morphological aspects of secretion in the arterial smooth muscle cell, with special reference to the Golgi complex and microtubular cytoskeleton. Atherosclerosis 1986; 61(3): 175-192. [DOI: 10.1016/0021-9150(86)90137-1]
Lafont A, Libby P. The smooth muscle cell: sinner or saint in restenosis and the acute coronary syndromes? J Am Coll Cardiol 1998; 32(1): 283-285. [DOI: https://doi. org/10.1016/S0735-1097(98)00216-2]
Schwartz SM, Virmani R, Rosenfeld ME. The good smooth muscle cells in atherosclerosis. Curr Atheroscler Rep 2000; 2(5): 422-429. [DOI: 10.1007/s11883-000-0081-5]
Dave T, Ezhilan J, Vasnawala H, Somani V. Plaque regres-sion and plaque stabilisation in cardiovascular diseases. Indian J Endocrinol Metab 2013; 17(6): 983-989. [DOI: 10.4103/2230-8210.122604]
Daida H, Dohi T, Fukushima Y, Ohmura H, Miyauchi K. The Goal of Achieving Atherosclerotic Plaque Regression with Lipid-Lowering Therapy: Insights from IVUS Trials. J Atheroscler Thromb 2019; 26(592-600. [DOI: 10.5551/jat.48603]
Guan S, Zhang Y, Wang B, Li W. Medical Therapy Induced Regression of Plaque in a Female Patient with ASCVD. Int Heart J 2019; 60(1): 175-177. [DOI: 10.1536/ihj.17-394]
Chaldakov GN. Colchicine, a microtubule-disassembling drug, in the therapy of cardiovascular diseases. Cell Biol Int 2018; 42(8): 1079-1084. [DOI: 10.1002/cbin.10988]
Chaldakov GN, Fiore M, Ghenev PI, Stankulov IS, Angelucci F, Pavlov PS, et al. Conceptual novelities in atherogenesis: smooth muscle cells,adventitia, and adipose tissue. Biomed Rev 2000; 11:63-67.
Rabbani R, Topol EJ. Strategies to achieve coronary ar-terial plaque stabilization. Cardiovasc Res 1999; 41(2):402-417. [DOI: 10.1016/s0008-6363(98)00279-x]
Silvestre-Roig C, de Winther MP, Weber C, Daemen MJ, Lutgens E, Soehnlein O. Atherosclerotic plaque destabi-lization: mechanisms, models, and therapeutic strategies. Circ Res 2014; 114(1): 214-226. [DOI: 10.1161/CIRCRE-SAHA.114.302355]
Takata K, Imaizumi S, Zhang B, Miura S-I, Saku K. Sta-bilization of high-risk plaques. Cardiovasc Diagn Ther 2016; 6(4): 304-321. [DOI: 10.21037/cdt.2015.10.03]
Ylä-Herttuala S, Bentzon JF, Daemen M, Falk E, Garcia-Garcia HM, Herrmann J, et al. Stabilization of athero-sclerotic plaques: an update. Eur Heart J 2013; 34(42): 3251-3258. [DOI:10.1093/eurheartj/eht301]
Chen P-Y, Qin L, Li G, Tellides G, Simons M. Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression. EMBO Mol Med 2016; 8(7): 712-728. [DOI: 10.15252/emmm.201506181]
Dong M, Zhong L, Chen WQ, Ji XP, Zhang M, Zhao YX, et al. Doxycycline stabilizes vulnerable plaque via inhib-iting matrix metalloproteinases and attenuating inflam-mation in rabbits. PloS one 2012; 7(6): e39695-e39695.[DOI: 10.1371/journal.pone.0039695]
Xiong W, Knispel RA, Dietz HC, Ramirez F, Baxter BT. Doxycycline delays aneurysm rupture in a mouse model of Marfan syndrome. J Vasc Surg 2008; 47(1): 166-172; discussion 172. [DOI: 10.1016/j.jvs.2007.09.016]
Parker SJ, Stotland A, MacFarlane E, Wilson N, Orosco A, Venkatraman V, et al. Proteomics reveals Rictor as a noncanonical TGF-β signaling target during aneurysm progression in Marfan mice. Am J Physiol Heart Circ Physiol 2018; 315(5): H1112-H1126. [DOI: 10.1152/ajpheart.00089.2018]
Crosas-Molist E, Meirelles T, López-Luque J, Serra-Peina-do C, Selva J, Caja L, et al. Vascular Smooth Muscle Cell Phenotypic Changes in Patients With Marfan Syndrome. Arteriosc Thromb Vasc Biol 2015; 35(4): 960-972. [DOI: doi:10.1161/ATVBAHA.114.304412]
Hibender S, Franken R, Roomen Cv, Braake At, Made Ivd, Schermer EE, et al. Resveratrol Inhibits Aortic Root Dilatation in the Fbn1C1039G/+ Marfan Mouse Model. Arteriosc Thromb Vasc Biol 2016; 36(8): 1618-1626. [DOI: doi:10.1161/ATVBAHA.116.307841]
Molloy KJ, Thompson MM, Jones JL, Schwalbe EC, Bell PR, Naylor AR, et al. Unstable carotid plaques exhibit raised matrix metalloproteinase-8 activity. Circulation 2004; 110(3): 337-343. [DOI: 10.1161/01. CIR.0000135588.65188.14]
Newby AC. Metalloproteinases and vulnerable athero-sclerotic plaques. Trends Cardiovasc Med 2007; 17(8):253-258. [DOI: 10.1016/j.tcm.2007.09.001]
Newby AC. Role of metalloproteinases in plaque rupture. Int J Gerontol 2007; 1(3): 103-111.
Ruddy JM, Ikonomidis JS, Jones JA. Multidimensional Contribution of Matrix Metalloproteinases to Athero-sclerotic Plaque Vulnerability: Multiple Mechanisms of Inhibition to Promote Stability. J Vasc Res 2016; 53(1-2):1-16. [DOI: 10.1159/000446703]
Johnson JL, Devel L, Czarny B, George SJ, Jackson CL, Rogakos V, et al. A selective matrix metalloproteinase-12 inhibitor retards atherosclerotic plaque development in apolipoprotein E-knockout mice. Arterioscler Thromb Vasc Biol 2011; 31(3): 528-535. [DOI: 10.1161/AT-VBAHA.110.219147]
Fredman G, Tabas I. Boosting Inflammation Resolution in Atherosclerosis: The Next Frontier for Therapy. Am J Pathol 2017; 187(6): 1211-1221. [DOI: 10.1016/j. ajpath.2017.01.018]
Fredman G. Can Inflammation-Resolution Provide Clues to Treat Patients According to Their Plaque Pheno-type? Front Pharmacol 2019; 10(205). [DOI: 10.3389/fphar.2019.00205]
Carracedo M, Artiach G, Arnardottir H, Bäck M. The resolution of inflammation through omega-3 fatty acids in atherosclerosis, intimal hyperplasia, and vascular calcification. Semin Immunopathol 2019; 41(6): 757-766.[DOI: 10.1007/s00281-019-00767-y]
Viola JR, Lemnitzer P, Jansen Y, Csaba G, Winter C, Neideck C, et al. Resolving Lipid Mediators Maresin 1 and Resolvin D2 Prevent Atheroprogression in Mice. Circ Res 2016; 119(9): 1030-1038. [DOI: doi:10.1161/CIRCRESAHA.116.309492]
Rosas-Ballina M, Tracey KJ. Cholinergic control of inflammation. J Intern Med 2009; 265(6): 663-679. [DOI: 10.1111/j.1365-2796.2009.02098.x]
Jhang J-F, Wang H-J, Hsu Y-H, Birder LA, Kuo H-C. Upregulation of neurotrophins and transforming growth factor-β expression in the bladder may lead to nerve hyperplasia and fibrosis in patients with severe ketamine-associated cystitis. Neurourol Urodyn 2019; 38(8): 2303-2310. [DOI: 10.1002/nau.24139]
Liu Z, Cao Y, Liu G, Yin S, Ma J, Liu J, et al. p75 neurotrophin receptor regulates NGF-induced myofibroblast differentiation and collagen synthesis through MRTF-A. Exp Cell Res 2019; 383(1): 111504. [DOI: https://doi. org/10.1016/j.yexcr.2019.111504]
Rocco ML, Soligo M, Manni L, Aloe L. Nerve Growth Factor: Early Studies and Recent Clinical Trials. Curr Neuropharmacol 2018; 16(10): 1455-1465. [DOI: 10.21 74/1570159X16666180412092859]
Aloe L: Nerve growth factor, human skin ulcers and vascularization. Our experience. In: Progress in Brain Research. Volume 146: Elsevier, 2004; 515-522.
Aloe L, Tirassa P, Lambiase A. The topical application of nerve growth factor as a pharmacological tool for human corneal and skin ulcers. Pharmacol Res 2008; 57(4): 253-258. [DOI: https://doi.org/10.1016/j.phrs.2008.01.010]
Chaldakov GN, Fiore M, Stankulov IS, Manni L, Hris-tova MG, Antonelli A, et al.: Neurotrophin presence in human coronary atherosclerosis and metabolic syndrome: a role for NGF and BDNF in cardiovascular disease? In: Progress in Brain Research. Volume 146: Elsevier, 2004;279-289.
Li H, Zhang L, Yin D, Zhang Y, Miao J. Targeting Phos-phatidylcholine-Specific Phospholipase C for Atherogen-esis Therapy. Trends Cardiovasc Med 2010; 20(5): 172-176. [DOI: https://doi.org/10.1016/j.tcm.2011.02.002]
Zhang L, Zhao J, Su L, Huang B, Wang L, Su H, et al. D609 inhibits progression of preexisting atheroma and promotes lesion stability in apolipoprotein e-/- mice: a role of phosphatidylcholine-specific phospholipase in atherosclerosis. Arterioscler Thromb Vasc Biol 2010; 30(3): 411-418. [DOI: 10.1161/ATVBAHA.109.195768]
Zhao Y, Li K, Zhao B, Su L. Discovery of novel PC-PLC activity inhibitors. Chem Biol Drug Des 2019; 94(8. [DOI: 10.1111/cbdd.13606]
Meng A, Luberto C, Meier P, Bai A, Yang X, Hannun YA, et al. Sphingomyelin synthase as a potential target for D609-induced apoptosis in U937 human monocytic leukemia cells. Exp Cell Res 2004; 292(2): 385-392. [DOI: 10.1016/j.yexcr.2003.10.001]
Li Y, Huang T, Lou B, Ye D, Qi X, Li X, et al. Discovery, synthesis and anti-atherosclerotic activities of a novel selective sphingomyelin synthase 2 inhibitor. Eur J Med Chem 2019; 163(864-882. [DOI: https://doi.org/10.1016/j. ejmech.2018.12.028]
Kühnast S, van der Hoorn JWA, Pieterman EJ, van den Hoek AM, Sasiela WJ, Gusarova V, et al. Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin. J Lipid Res 2014; 55(10): 2103-2112. [DOI: 10.1194/jlr.M051326]
Hafiane A. Vulnerable Plaque, Characteristics, Detection, and Potential Therapies. J Cardiovasc Dev Dis 2019; 6(3): 26. [DOI: 10.3390/jcdd6030026]
Tang J, Lobatto ME, Hassing L, van der Staay S, van Rijs SM, Calcagno C, et al. Inhibiting macrophage prolifera-tion suppresses atherosclerotic plaque inflammation. Sci Adv 2015; 1(3). [DOI: 10.1126/sciadv.1400223]