Scientific Online Resource System

Biomedical Reviews

Natural killer cells and immunotherapy based on monoclonal antibodies

Magdalena Pencheva-Demireva, Katerina Kavaldzhieva, Nikola Mladenov, Tzvetanka Markova, Dimitrina Dimitrova-Dikanarova

Abstract

Natural killer (NK) cells are effector lymphocytes of innate immunity needed to protect against stressed cells and to destroy tumor cells and virus-infected cells. These cells play an important role in the immune surveillance of malignant cells, preventing their uncontrolled growth. Natural killer cells recognize target cells directly through their receptors, which bind to various determinants on the surface of the target cell. The receptor-ligand (secretory or membrane-bound) interaction between the NK cells and the target cells determines NK’s cell activity. The use of monoclonal antibodies in tumor therapy has increased significantly in the recent years. These antibodies are intended to block inhibitory receptors (immune checkpoint inhibitors) expressed by immune cells or to block their ligands expressed by tumor cells. Examples of such immune checkpoint molecules are the following receptors: cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1) and others. This blocking inhibits tumor growth by enabling immune system reactivation. The advances in cellular immunobiology that have provided the establishment of blocking monoclonal antibodies (ipilimumab, nivolumab, etc.) and increased NK cell proliferative activity are
promising therapies for neoplasms.


Keywords

lymphocytes, inhibitory receptors, cancer, PD-1, CTLA-4

Full Text


References

Mitra R, Singh S, Khar A. Antitumor immune responses. Exp Rev Mol Med 2003; 5(3):1-19. DOI: 10.1017/S1462399403005623.

Smyth MJ, Cretney E, Kelly JM, Westwood JA, Street SE, Yagita H, et al. Activation of NK cell cytotoxicity. Mol Immunol 2005; 42(4):501-510. DOI: 10.1016/j. molimm.2004.07.034

Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci USA 1999; 96(12):6879-6884. DOI: 10.1073/pnas.96.12.6879

Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T. Costimulation of CD8 alpha beta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol 2001; 2(3):255-260. DOI: 10.1038/85321

Jinushi M, Takehara T, Tatsumi T, Kanto T, Groh V, Spies T, et al. Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid. Int J Cancer 2003; 104(3):354-361. DOI: 10.1002/ijc.10966

Ljunggren HG, Kärre K. In search of the ‚missing self‘: MHC molecules and NK cell recognition. Immunol Today 1990; 11(7):237-244. DOI: 10.1016/0167-5699(90)90097-s

Watzl C. The NKG2D receptor and its ligands-recognition beyond the „missing self“? Microbes Infect 2003; 5(1):31-37. DOI: 10.1016/s1286-4579(02)00057-6

Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer 2016; 16(1):7-19. DOI: 10.1038/nrc.2015.5

Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity‘s roles in cancer suppression and promotion. Science 2011; 331(6024):1565-1570. DOI: 10.1126/science.1203486

Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12(4):252-264. DOI: 10.1038/nrc3239

Kvistborg P, Philips D, Kelderman S, Hageman L, Ottensmeier C., Joseph-Pietras, D, et al. Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Sci Transl Med 2014; 6(254):254ra128. DOI: 10.1126/scitranslmed.3008918

Ribas A, Kefford R, Marshall MA, Punt C, Haanen JB, Marmol M, et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol 2013; 31(5):616-622. DOI: 10.1200/JCO.2012.44.6112

Carotta S. Targeting NK Cells for Anticancer Immunotherapy: Clinical and Preclinical Approaches. Front Immunol. 2016;7:152. DOI: 10.3389/fimmu.2016.00152

Kehayov I, Kyurkchiev S. Compendium of immunology. Venimeks, Sofia, Bulgaria. 1999, 110-117.

Ma Z, Li W, Yoshiya S, Xu Y, Hata M, El-Darawish Y et al. Augmentation of Immune Checkpoint Cancer Immunotherapy with IL18. Clin Cancer Res 2016; 22(12):2969-2980. DOI: 10.1158/1078-0432.CCR-15-1655

Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol 2017; 18(12):e731-e741. DOI:10.1016/S1470-2045(17)30607-1

Twyman-Saint VC, Rech AJ, Maity A, Rengan R, Pauken K, Stelekati E, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015; 520(7547):373-7. DOI: 10.1038/nature14292

Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013; 369(2):122-33. DOI: 10.1056/NEJMoa1302369

Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015; 372(21):2006-17. DOI: 10.1056/NEJMoa1414428

Larkin J, Hodi FS, Wolchok JD. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med. 2015; 373(13):1270-1271. DOI: 10.1056/NEJMc1509660

Chatterjee P, Patsoukis N, Freeman GJ, Boussiotis VA. Distinct roles of PD-1 ITSM and ITIM in regulating interactions with SHP-2, ZAP-70 and Lck, and PD-1-mediated inhibitory function. Blood 2013;122:19. DOI: 10.1182/blood.V122.21.191.191

Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol 2004; 173(2):945-954. DOI: 10.4049/jimmunol.173.2.945

Sheppard KA, Fitz LJ, Lee JM, Benander C, George GA, Wooters J, et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett 2004; 574(1-3):37-41. DOI: 10.1016/j.febslet.2004.07.083

Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 2008; 8(6):467-477. DOI: 10.1038/nri2326

Karachaliou N, Gonzalez-Cao M, Crespo G, Drozdowskyj A, Aldeguer E, Gimenez-Capitan A, et al. Interferon gamma, an important marker of response to immune checkpoint blockade in non-small cell lung cancer and melanoma patients. Ther Adv Med Oncol 2018; 10:1758834017749748. DOI: 10.1177/1758834017749748




DOI: http://dx.doi.org/10.14748/bmr.v31.7705

Refbacks

Article Tools
Email this article (Login required)
About The Authors

Magdalena Pencheva-Demireva
Department of Biology, Medical University-Sofia
Bulgaria

Katerina Kavaldzhieva
Department of Biology, Medical University-Sofia
Bulgaria

Nikola Mladenov
Department of Biology, Medical University-Sofia
Bulgaria

Tzvetanka Markova
Department of Pharmacology and Toxicology, Medical University-Sofia
Bulgaria

Dimitrina Dimitrova-Dikanarova
Department of Biology, Medical University-Sofia
Bulgaria

Font Size


|