Sakmar TP, Huber T. Rhodopsin. Encyclopedia of Neuroscience 2009; 365-372. doi: 10.1016/B978-008045046-9.00922-0
Kiser PD, Golczak M, Palczewski K. Chemistry of the retinal (visual) cycle. Chem Rev 2014; 114: 194-232. doi: 10.1021/cr400107q
Manoj KM, Manekkathodi A. Light’s Interaction with Pigments in Chloroplasts: The Murburn Perspective, with Special Relevance to Carotenoids. OSF Preprints 2020.(In Press). doi: 10.31219/osf.io/wx4gv
Boycott BB, Dowling JE. Organization of the primate retina: Light microscopy, with an appendix: A second type of midget bipolar cell in the primate retina. Phil Soc Trans R Soc Lond B 1969; 255: 109-184. doi: 10.1098/rstb.1969.0004
Berg JM, Tymoczko JL, Stryer L. Biochemistry. WH Freeman, 2002.
Lehninger A L, Nelson DL, Cox M. Principles of Biochemistry. Palgrave Macmillan Limited, 2004.
Voet D, Voet JG. Biochemistry. Wiley, 2011.
Masland RH, Martin PR. The unsolved mystery of vision. Curr Biol 2007; 17:R577-R582. doi: 10.1016/j. cub.2007.05.040.
Kono M, Goletz PW, Crouch RK. 11-cis- and all-trans-retinols can activate rod opsin: rational design of the visual cycle. Biochemistry 2008; 47:7567-7571. doi:10.1021/bi800357b
Westheimer G. Visual hyperacuity. Prog Sensory Physiol 1981; 1:1-30.
Palczewski K. G protein-coupled receptor rhodopsin. Annu Rev Biochem 2006;75:743-67. doi: 10.1146/an-nurev.biochem.75.103004.142743.
Han R-M, Zhang JP, Skibsted LH. Reaction dynamics of flavonoids and carotenoids as antioxidants. Molecules 2012; 17:2140-2160.
Konovalova TA, Kispert LD, Konovalov VV. Photoinduced electron transfer between carotenoids and solvent molecules. J Phys Chem B 1997; 101:7858-7862.
Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the an-terior and posterior eye segments in adults. Oxid Med Cell Longevity 2016; 3164734. doi: 10.1155/2016/3164734
Rohowetz LJ, Kraus JG, Koulen P. Reactive oxygen species-mediated damage of retinal neurons: Drug development targets for therapies of chronic neurodegeneration of the retina. Int J Mol Sci. 2018; 19:3362. doi: 10.3390/ijms19113362.
Cohn M, Drysdale GR. A study with O18 of adenosine triphosphate formation in oxidative phosphorylation. J Biol Chem 1955; 216:831-846.
Mironova GD. Metmyoglobin and peroxide compounds in mitochondria. In: Mitochondria. Structure and Functions in Norm and Pathology. pp 169-173. Nauka, Moscow. 1971
K. Mailer, Superoxide radical as electron donor for oxidative phosphorylation of ADP. Biochem. Biophys. Res. Comm. 1990; 170: 59-64.
Tyszkiewicz E, Roux E. Role of the superoxide anion (O2-) and hydroxyl radical (OH.) in ATP synthesis obtained with spinach chloroplasts in darkness. In: Progress in Photo-synthesis Research. Biggens J editor. Vol. III, 213-216. Martinus Nijhoff Publishers, 1987
Manoj KM, et al. Aerobic respiration: proof of concept for the murburn perspective. J Biomol Struct Dyn 2019; 37:4524-4556. doi:10.1080/07391102.2018.1552896
Manoj KM, et al. Chemiosmotic and murburn explanations for aerobic respiration: predictive capabilities, structure-function correlations and chemico-physical logic. Arch Biochem Biophys. 2019; 676:108128. doi: 10.1016/j.abb.2019.108128
Manoj KM, Bazhin N. Murburn precepts of aerobic respiration and homeostasis. OSF Preprints 2019. doi:10.31219/osf.io/hx4p9
Manoj KM, et al. Acute toxicity of cyanide in aerobic respiration: Theoretical and experimental support for murburn explanation. Biomol Concepts 2020a; 11:32-56. doi:10.1515/bmc-2020-0004
Manoj KM, et al. Murburn precepts for the light reaction of oxygenic photosynthesis. OSF Preprints 2020b; doi: 10.31219/osf.io/95brg
Wilden U, Kühn H. Light-dependent phosphorylation of rhodopsin: number of phosphorylation sites. Biochemistry 1982;21(12):3014-22. doi: 10.1021/bi00541a032
Maeda T, Imanishi Y, Palczewski K. Rhodopsin phosphorylation: 30 years later. Prog Retin Eye Res 2003; 22:417-34. doi: 10.1016/s1350-9462(03)00017-x
Zele AJ, Feigl B, Adhikari P, et al. Melanopsin photoreception contributes to human visual detection, temporal and colour processing. Sci Rep 2018; 8: 3842. doi: 10.1038/s41598-018-22197-w
Okawa H, Sampath AP, Laughlin SB, Fain GL. ATP consumption by mammalian rod photoreceptors in darkness and in light. Curr Biol. 2008; 18:1917-1921. doi:10.1016/j. cub.2008.10.029
Yu H-H. How many photons get into your eyes? 2016; https://medium.com/cortically-magnified/estimating-the-number-of-photons-that-hit-the-eye-c0208e7e0b64
Purves D, Augustine GJ, Fitzpatrick D, et al. Neuroscience, 2nd edition. Sunderland, MA, Sinauer Associates, 2001.
Tinsley JN, Molodtsov, M, Prevedel, R et al. Direct detection of a single photon by humans. Nat Commun 2016; 7:12172. doi: 10.1038/ncomms12172
Mittag TW, Bayer AU, La VM. Light-induced retinal damage in mice carrying a mutated SOD I gene. Exp Eye Res 1999; 69(6): 677–683. doi: 10.1006/exer.1999.0748
Tosini G, Baba K, Hwang CK, Iuvone PM. Melatonin: an underappreciated player in retinal physiology and pathophysiology. Exp Eye Res 2012;103:82-89. doi:10.1016/j. exer.2012.08.009