Scientific Online Resource System

Biomedical Reviews

Brainstem expression of SLC6A4, HTR2C, NGF, BDNF, TRKANGF, TRKBBDNF and P75NTR following paternal alcohol exposure in the male mouse

Giampiero Ferraguti, Claudia Codazzo, Carla Petrella, Roberto Coccurello, Mauro Ceccanti, Marco Fiore

Abstract

We previously showed in the mouse that paternal preconception alcohol exposure (PPAE) affects alcohol sensitivity by analyzing postnatal alcohol preference in the offspring. In this mouse study by using the same animals of the previous investigation we aimed at examining whether or not PPAE may disrupt the epigenetic regulation of postnatal alcohol sensitivity in the offspring by investigating pathways regulating mood, emotion, serotonergic tone and neurotrophins such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). We analyzed the brainstem gene expression of  serotonin transporter Solute Carrier Family 6 Member4 (SLC6A4), 5-Hydroxytryptamine Receptor 2C (HTR2C) binding the neurotransmitter serotonin, and NGF, BDNF and their tropomyosin receptor kinase A (TrkANGF) and B (TrKBBDNF) (high-affinity NGF and BDNF receptors) and p75NTR (low-affinity, pan-neurotrophins receptor) in adult offspring that underwent or not postnatal alcohol exposure. We found SLC6A4 elevation and decreased HTR2C in the offspring of chronic alcohol-exposed sires. We also disclosed p75NTR elevation in the offspring of chronically exposed sires as well as postnatal sensitization to low alcohol doses in the offspring of chronically exposed sires for both TrKBBDNF and BDNF. In our PPAE mouse model, where genotype effects can be carefully measured, we observed that the sires’ exposure to alcohol before mating might disrupt the sensitivity to the serotonergic/neurotrophic-associated effects of alcohol influencing the postnatal alcohol preference in the offspring.

Keywords

SLC6A4; BDNF; NGF; TrkANGF; TrKBBDNF; HTR2C; p75NTR; Brainstem; Epigenetic; Pre-conceptual Paternal Alcohol Drinking

Full Text


References

Ceccanti M, Coccurello R, Carito V, Ciafrè S, Ferraguti G, Giacovazzo G, et al. Paternal alcohol exposure in mice alters brain NGF and BDNF and increases ethanol-elicited preference in male offspring. Addict Biol 2016;21:776–87. doi:10.1111/adb.12255.

Rompala GR, Finegersh A, Slater M, Homanics GE. Paternal preconception alcohol exposure imparts intergenerational alcohol-related behaviors to male offspring on a pure C57BL/6J background. Alcohol 2017;60:169–77. doi:10.1016/j.alcohol.2016.11.001.

Abel EL. Paternal contribution to fetal alcohol syndrome. Addict Biol 2004;9:127–33. doi:10.1080/135562104100 01716980.

Ciafrè S, Ferraguti G, Greco A, Polimeni A, Ralli M, Ceci FM, et al. Alcohol as an early life stressor: epigenetics, metabolic, neuroendocrine and neurobehavioral implications. Neurosci Biobehav Rev 2020;118:654–68. doi:10.1016/j.neubiorev.2020.08.018.

Messina MP, D’Angelo A, Battagliese G, Coriale G, Tarani L, Pichini S, et al. Fetal alcohol spectrum disorders awareness in health professionals: Implications for psychiatry. Riv Psichiatr 2020;55:79–89. doi:10.1708/3333.33022.

Williams JF, Smith VC. Fetal Alcohol Spectrum Disorders. Pediatrics 2015;136:e1395–406. doi:10.1542/peds.2015-3113.

Streissguth AP, Bookstein FL, Barr HM, Sampson PD, O’Malley K, Young JK. Risk factors for adverse life outcomes in Fetal Alcohol Sydnrome and Fetal Alcohol Effects. J Dev Behav Pediatr 2004;25:228–38. doi:10.1097/00004703-200408000-00002.

Ferraguti G, Merlino L, Battagliese G, Piccioni MGMG, Barbaro G, Carito V, et al. Fetus morphology changes by second-trimester ultrasound in pregnant women drinking alcohol. Addict Biol 2019;25. doi:10.1111/adb.12724.

Coriale G, Fiorentino D, Lauro FDI, Marchitelli R, Scalese B, Fiore M, et al. Fetal Alcohol Spectrum Dis-order (FASD): Neurobehavioral profile, indications for diagnosis and treatment. Riv Psichiatr 2013;48:359–69. doi:10.1708/1356.15062.

Gupta KK, Gupta VK, Shirasaka T. An Update on Fetal Alcohol Syndrome - Pathogenesis, Risks, and Treatment. Alcohol Clin Exp Res 2016;40:1594–602. doi:10.1111/acer.13135.

Popova S, Lange S, Shield K, Burd L, Rehm J. Prevalence of fetal alcohol spectrum disorder among special subpopulations: a systematic review and meta-analysis. Addiction 2019;114:1150–72. doi:10.1111/add.14598.

Popova S, Lange S, Shield K, Mihic A, Chudley AE, Mukherjee RAS, et al. Comorbidity of fetal alcohol spectrum disorder: A systematic review and meta-analysis. Lancet 2016;387:978–87. doi:10.1016/S0140-6736(15)01345-8.

Lange S, Probst C, Gmel G, Rehm J, Burd L, Popova S. Global prevalence of fetal alcohol spectrum disorder among children and youth: A systematic review and meta-analysis. JAMA Pediatr 2017;171:948–56. doi:10.1001/jamapediatrics.2017.1919.

Eisenman R. Understanding and Treating Alcoholism, vol. 1: An Empirically Based Clinician’s Handbook for the Treatment of Alcoholism; Understanding and Treating Alcoholism, vol. 2: Biological, Psychological, and Social Aspects of Alcohol Consumption and Abuse. vol. 149. Psychology Press; 1992. doi:10.1176/ajp.149.7.968.

D’Angelo A, Ferraguti G, Petrella C, Greco A, Ralli M, Vitali M, et al. Challenges for Midwives’ Healthcare Practice in the Next Decade : COVID-19 – Global Climate Changes – Aging and Pregnancy – Gestational Alcohol Abuse. Clin Ter 2021;172:30–6. doi:10.7417/CT.2021.2277.

Angelo AD, Ceccanti M, Fiore M, Petrella C, Greco A, Porrari R, et al. Pregnancy in women with physical and intellectual disability: psychiatric implications. Child Dev Res 2020;55:1–6.

Petrella C, Carito V, Carere C, Ferraguti G, Ciafrè S, Natella F, et al. Oxidative stress inhibition by resveratrol in alcohol dependent mice. Nutrition 2020; In press:110783. doi:10.1016/j.nut.2020.110783.

Fiore M, Messina MP, Petrella C, D’Angelo A, Greco A, Ralli M, et al. Antioxidant properties of plant poly-phenols in the counteraction of alcohol-abuse induced damage: Impact on the Mediterranean diet. J Funct Foods 2020;71:104012. doi:10.1016/j.jff.2020.104012.

Ceccanti M, Hamilton D, Coriale G, Carito V, Aloe L, Chaldakov G, et al. Spatial learning in men undergoing alcohol detoxification. Physiol Behav 2015;149:324–330. doi:10.1016/j.physbeh.2015.06.034.

Coriale G, Fiorentino D, Porrari R, Battagliese G, Capriglione I, Cereatti F, et al. Diagnosis of alcohol use disorder from a psychological point of view. Riv Psichiatr 2018;53:128–40. doi:10.1708/2925.29415.

Ceccanti M, Attili A, Balducci G, Attilia F, Giacomelli S, Rotondo C, et al. Acute alcoholic hepatitis. J Clin Gastroenterol 2006;40:833–41.

Ceccanti M, Coriale G, Hamilton DA, Carito V, Coccurello R, Scalese B, et al. Virtual Morris task responses in individuals in an abstinence phase from alcohol. Can J Physiol Pharmacol 2018;96:128–36. doi:10.1139/cjpp-2017-0013.

Martellucci S, Ralli M, Attanasio G, Russo FY, Marcelli V, Greco A, et al. Alcohol binge-drinking damage on the vestibulo-oculomotor reflex. Eur Arch Oto-Rhino-Laryngology 2020:1–8.

Coriale G, Gencarelli S, Battagliese G, Delfino D, Fiorentino D, Petrella C, et al. Physiological Responses to Induced Stress in Individuals Affected by Alcohol Use Disorder with Dual Diagnosis and Alexithymia. Clin Ter 2020;171:e120–9. doi:10.7417/CT.2020.2201.

WHO. Global status report on alcohol and health. Geneva, Switzerland. vol. 122. World Health Organization; 2014.

Coriale G, Battagliese G, Pisciotta F, Attilia ML, Porrari R, De Rosa F, et al. Behavioral responses in people af-fected by alcohol use disorder and psychiatric comorbid-ity: correlations with addiction severity. Ann Ist Super Sanita 2019;55:131–42. doi:10.4415/ANN_19_02_05.

Ledda R, Battagliese G, Attilia F, Rotondo C, Pisciotta F, Gencarelli S, et al. Drop-out, relapse and abstinence in a cohort of alcoholic people under detoxification. Physiol Behav 2019;198:67–75. doi:10.1016/j.phys-beh.2018.10.009.

Attilia F, Perciballi R, Rotondo C, Capriglione I, Iannuzzi S, Attilia ML, et al. Alcohol withdrawal syndrome: Diagnostic and therapeutic methods. Riv Psichiatr 2018;53:118–22. doi:10.1708/2925.29413.

Ceccanti M, Iannitelli A, Fiore M. Italian Guidelines for the treatment of alcohol dependence. Riv Psichiatr 2018;53:105–6. doi:10.1708/2925.29410.

Attilia F, Perciballi R, Rotondo C, Capriglione I, Ianuzzi S, Attilia ML, et al. Pharmacological treatment of alcohol use disorder. Scientific evidence. Riv Psichiatr 2018;53:123–7. doi:10.1708/2925.29414.

Vitali M, Sorbo F, Mistretta M, Scalese B, Porrari R, Galli D, et al. Dual diagnosis: An intriguing and actual nosographic issue too long neglected. Riv Psichiatr 2018;53:154–9. doi:10.1708/2925.29418.

Prescott CA, Kendler KS. Genetic and environmental contributions to alcohol abuse and dependence in a population-based sample of male twins. Am J Psychiatry 1999;156:34–40. doi:10.1176/ajp.156.1.34.

Ciafre’ S, Carito V, Ferraguti G, Greco A, Chaldakov GN, Fiore M, et al. How Alcohol Drinking Affects our Genes: an Epigenetic Point of View. Biochem Cell Biol 2019;97:bcb-2018-0248. doi:10.1139/bcb-2018-0248.

Rompala GR, Finegersh A, Homanics GE. Paternal preconception ethanol exposure blunts hypothalamic-pituitary-adrenal axis responsivity and stress-induced excessive fluid intake in male mice. Alcohol 2016;53:19–25. doi:10.1016/j.alcohol.2016.03.006.

Finegersh A, Homanics GE. Paternal alcohol exposure reduces alcohol drinking and increases behavioral sensitivity to alcohol selectively in male offspring. PLoS One 2014;9:e99078. doi:10.1371/journal.pone.0099078.

Radford EJ. Exploring the extent and scope of epigenetic inheritance. Nat Rev Endocrinol 2018;14:345–55. doi:10.1038/s41574-018-0005-5.

Govorko D, Bekdash RA, Zhang C, Sarkar DK. Male germline transmits fetal alcohol adverse effect on hypothalamic proopiomelanocortin gene across generations. Biol Psychiatry 2012;72:378–88. doi:10.1016/j. biopsych.2012.04.006.

Abel EL. Rat offspring sired by males treated with alcohol. Alcohol 1993;10:237–42. doi:10.1016/0741-8329(93)90042-M.

Tanaka H, Suzuki N, Arima M. Experimental studies on the influence of male alcoholism on fetal development. Brain Dev 1982;4:1–6.

Jamerson PA, Wulser MJ, Kimler BF. Neurobehavioral effects in rat pups whose sires were exposed to alcohol. Dev Brain Res 2004;149:103–11. doi:10.1016/j.devbrain-res.2003.12.010.

Abel EL. Paternal behavioral mutagenesis. Neurotoxicology 1989;10:335–45.

Chaldakov GN, Fiore M, Tonchev AB, Aloe L. Neuroadipology: A novel component of neuroendocrinology. Cell Biol Int 2010;34:1051–3. doi:10.1042/CBI20100509.

Budni J, Bellettini-Santos T, Mina F, Garcez ML, Zugno AI. The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease. Aging Dis 2015;6:331–41. doi:10.14336/AD.2015.0825.

Ciafrè S, Carito V, Ferraguti G, Greco A, Ralli M, Tirassa P, et al. Nerve growth factor in brain diseases. Biomed Rev 2018;29:1–16. doi:10.14748/bmr.v29.5845.

45 Carito V, Ceccanti M, Tarani L, Ferraguti G, N. Chalda kov G, Fiore M. Neurotrophins’ Modulation by Olive Polyphenols. Curr Med Chem 2016;23:3189–97. doi:10 .2174/0929867323666160627104022.

Manni L, Aloe L, Fiore M. Changes in cognition induced by social isolation in the mouse are restored by electro-acupuncture. Physiol Behav 2009;98:537–42. doi:10.1016/j.physbeh.2009.08.011.

Aloe L, Alleva E, Fiore M. Stress and nerve growth factor: Findings in animal models and humans. Pharmacol Biochem Behav 2002;73:159–66. doi:10.1016/S0091-3057(02)00757-8.

Fiore M, Chaldakov GN, Aloe L. Nerve growth factor as a signaling molecule for nerve cells and also for the neuroendocrine-immune systems. Rev Neurosci 2009;20:133–45. doi:10.1515/REVNEURO.2009.20.2.133.

Allen SJ, Dawbarn D. Clinical relevance of the neurotrophins and their receptors. Clin Sci 2006;110:175–91.

Amendola T, Fiore M, Aloe L. Postnatal changes in nerve growth factor and brain derived neurotrophic factor levels in the retina, visual cortex, and geniculate nucleus in rats with retinitis pigmentosa. Neurosci Lett 2003;345:37–40. doi:10.1016/S0304-3940(03)00491-9.

Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front Cell Neurosci 2019;13. doi:10.3389/fn-cel.2019.00363.

Chaldakov GN, Fiore M, Tonchev A, Dimitrov D, Pancheva R, Rancic G, et al. Homo obesus: A Metabotrophin-Deficient Species. Pharmacology and Nutrition Insight. Curr Pharm Des 2007;13:2176–9. doi:10.2174/138161207781039616.

Chaldakov GN, Fiore M, Ghenev PI, Stankulov IS, Aloe L. Atherosclerotic lesions: Possible interactive involvement of intima, adventitia and associated adipose tissue. Int Med J 2000;7:43–9.

Yanev S, Aloe L, Fiore F, Chaldakov GN. Neurotrophic and metabotrophic potential of nerve growth factor and brain-derived neurotrophic factor: Linking cardiometabolic and neuropsychiatric diseases. World J Pharmacol 2013; 2: 92-99. DOI:10.5497/wjp.v2.i4.92

Tarani L, Carito V, Ferraguti G, Petrella C, Greco A, Ralli M, et al. Neuroinflammatory Markers in the Serum of Prepubertal Children with down Syndrome. J Immunol Res 2020;2020:6937154. doi:10.1155/2020/6937154.

Ceci FM, Ferraguti G, Petrella C, Greco A, Ralli M, Iannitelli A, et al. Nerve Growth Factor in Alcohol Use Disorders. Curr Neuropharmacol 2020;18. doi:10.2174 /1570159x18666200429003239.

Ceci FM, Ferraguti G, Petrella C, Greco A, Tirassa P, Iannitelli A, et al. Nerve Growth Factor, Stress and Diseases. Curr Med Chem 2020. doi:10.2174/0929867327999200 818111654.

Ciafre S, Ferraguti G, Tirassa P, Iannitelli A, Ralli M, Greco A, et al. Nerve growth factor in the psychiatric brain. Riv Psichiatr 2020;55:4–15. doi:10.1708/3301.32713.

Carito V, Ceccanti M, Ferraguti G, Coccurello R, Ciafrè S, Tirassa P, et al. NGF and BDNF Alterations by Prenatal Alcohol Exposure. Curr Neuropharmacol 2017;17:308–17. doi:10.2174/1570159x15666170825101308.

Ceccanti M, De Nicolò S, Mancinelli R, Chaldakov G, Carito V, Ceccanti M, et al. NGF and BDNF long-term variations in the thyroid, testis and adrenal glands of a mouse model of fetal alcohol spectrum disorders. Ann Ist Super Sanita 2013;49:383–90. doi:10.4415/ANN-13-04-11.

Fiore M, Mancinelli R, Aloe L, Laviola G, Sornelli F, Vitali M, et al. Hepatocyte growth factor, vascular endothelial growth factor, glial cell-derived neurotrophic factor and nerve growth factor are differentially affected by early chronic ethanol or red wine intake. Toxicol Lett 2009;188:208–13. doi:10.1016/j.toxlet.2009.04.013.

Ceccanti M, Mancinelli R, Tirassa P, Laviola G, Rossi S, Romeo M, et al. Early exposure to ethanol or red wine and long-lasting effects in aged mice. A study on nerve growth factor, brain-derived neurotrophic factor, hepatocyte growth factor, and vascular endothelial growth factor. Neurobiol Aging 2012;33:359–67. doi:10.1016/j. neurobiolaging.2010.03.005.

Fiore M, Laviola G, Aloe L, di Fausto V, Mancinelli R, Ceccanti M. Early exposure to ethanol but not red wine at the same alcohol concentration induces behavioral and brain neurotrophin alterations in young and adult mice. Neurotoxicology 2009;30:59–71. doi:10.1016/j. neuro.2008.11.009.

van den Brink RL, Pfeffer T, Donner TH. Brainstem Modulation of Large-Scale Intrinsic Cortical Activity Correlations. Front Hum Neurosci 2019;13:340. doi:10.3389/fnhum.2019.00340.

Hornung JP. The human raphe nuclei and the serotonergic system. J Chem Neuroanat 2003;26:331–43. doi:10.1016/j.jchemneu.2003.10.002.

66 Fiore M, Probert L, Kollias G, Akassoglou K, Alleva E, Aloe L. Neurobehavioral alterations in developing trans-genic mice expressing TNF-α in the brain. Brain Behav Immun 1996;10:126–38. doi:10.1006/brbi.1996.0013.

Aloe L; Fiore M. TNF-alpha expressed in the brain of transgenic mice lowers central tyroxine hydroxylase immunoreactivity and alters grooming behavior. Neurosci Lett 1997;238:65–8. doi:10.1016/S0304-3940(97)00850-1.

Wilcox RR. New Statistical Procedures for the Social Sciences. Hillsdale, NJ, L. Erlbaum Associates; 2013. doi:10.4324/9780203767757.

Carola V, Gross C. Mouse models of the 5-HTTLPR × stress risk factor for depression. Curr Top Behav Neurosci 2012;12:59–72. doi:10.1007/7854_2011_190.

Araragi N, Lesch K-P. Serotonin (5-HT) in the Regulation of Depression-Related Emotionality: Insight from 5-HT Transporter and Tryptophan Hydroxylase-2 Knockout Mouse Models. Curr Drug Targets 2013;14:549–70. do i:10.2174/1389450111314050005.

Sari Y, Johnson VR, Weedman JM. Role of the serotonergic system in alcohol dependence: From animal models to clinics. Prog Mol Biol Transl Sci 2011;98:401–43. doi:10.1016/B978-0-12-385506-0.00010-7.

Tanaka M, Watanabe Y. RNA Editing of Serotonin 2C Receptor and Alcohol Intake. Front Neurosci 2020;13:1390. doi:10.3389/fnins.2019.01390.

73 Hill EM, Stoltenberg SF, Bullard KH, Li S, Zucker RA, Burmeister M. Antisocial alcoholism and serotonin-related polymorphisms: Association tests. Psychiatr Genet 2002;12:143–53. doi:10.1097/00041444-200209000-00005.

Veenstra-VanderWeele J, Anderson GM, Cook EH. Pharmacogenetics and the serotonin system: Initial studies and future directions. Eur J Pharmacol 2000;410:165–81. doi:10.1016/S0014-2999(00)00814-1.

Mottagui-Tabar S, McCarthy S, Reinemund J, Anders- son B, Wahlestedt C, Heilig M. Analysis of 5-hydroxy-tryptamine 2C receptor gene promoter variants as alcohol-dependence risk factors. Alcohol Alcohol 2004;39:380–5. doi:10.1093/alcalc/agh086.

Thompson MD, Kenna GA. Variation in the serotonin transporter gene and alcoholism: Risk and response to pharmacotherapy. Alcohol Alcohol 2015;51:164–71. doi:10.1093/alcalc/agv090.

Heisler LK, Zhou L, Bajwa P, Hsu J, Tecott LH. Serotonin 5-HT2C receptors regulate anxiety-like behavior. Genes Brain Behav 2007;6:491–6. doi:10.1111/j.1601-183X.2007.00316.x.

Craige CP, Lewandowski S, Kirby LG, Unterwald EM. Dorsal raphe 5-HT2C receptor and GABA networks regulate anxiety produced by cocaine withdrawal. Neuropharmacology 2015;93:41–51. doi:10.1016/j.neurop-harm.2015.01.021.

Bubar M, Cunningham K. Serotonin 5-HT2A and 5-HT2C Receptors as Potential Targets for Modulation of Psychostimulant Use and Dependence. Curr Top Med Chem 2006;6:1971–85. doi:10.2174/156802606778522131.

Niswender CM, Herrick-Davis K, Dilley GE, Meltzer HY, Overholser JC, Stockmeier CA, et al. RNA editing of the human serotonin 5-HT2C receptor: Alterations in suicide and implications for serotonergic pharmacotherapy. Neuropsychopharmacology 2001;24:478–91. doi:10.1016/S0893-133X(00)00223-2.

Berg KA, Harvey JA, Spampinato U, Clarke WP. Physiological relevance of constitutive activity of 5-HT2A and 5-HT2C receptors. Trends Pharmacol Sci 2005;26:625–30. doi:10.1016/j.tips.2005.10.008.

Berg KA, Harvey JA, Spampinato U, Clarke WP. Physiological and therapeutic relevance of constitutive activity of 5-HT2A and 5-HT2C receptors for the treatment of depression. Prog Brain Res 2008;172:287–305. doi:10.1016/S0079-6123(08)00914-X.

Zhu J, Klein-Fedyshin M, Stevenson JM. Serotonin Transporter Gene Polymorphisms and Selective Serotonin Reuptake Inhibitor Tolerability: Review of Pharmacogenetic Evidence. Pharmacotherapy 2017;37:1089–104. doi:10.1002/phar.1978.

Cervilla JA, Rivera M, Molina E, Torres-González F, Bellón JA, Moreno B, et al. The 5-HTTLPR s/s genotype at the serotonin transporter gene (SLC6A4) increases the risk for depression in a large cohort of primary care attendees: The PREDICT-gene study. Am J Med Genet Part B Neuropsychiatr Genet 2006;141:912–7. doi:10.1002/ajmg.b.30455.

Serretti A, Kato M, De Ronchi D, Kinoshita T. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with selective serotonin reuptake inhibitor efficacy in depressed patients. Mol Psychiatry 2007;12:247–57. doi:10.1038/sj.mp.4001926.

Caviedes A, Lafourcade C, Soto C, Wyneken U. BDNF/ NF-κB signaling in the neurobiology of depression. Curr Pharm Des 2017;23:3154–63. doi:10.2174/1381612823 666170111141915.

Castrén E, Kojima M. Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol Dis 2017;97:119–26. doi:10.1016/j.nbd.2016.07.010.

Moonat S, Pandey SC. Stress, epigenetics, and alcoholism. Alcohol Res Curr Rev 2012;34:495–505.

89 Palmisano M, Pandey SC. Epigenetic mechanisms of alcoholism and stress-related disorders. Alcohol 2017;60:7–18. doi:10.1016/j.alcohol.2017.01.001.

Logrip ML, Janak PH, Ron D. Escalating ethanol intake is associated with altered corticostriatal BDNF expression. J Neurochem 2009;109:1459–68.

Logrip ML, Barak S, Warnault V, Ron D. Corticostriatal BDNF and alcohol addiction. Brain Res 2015;1628:60–7. doi:10.1016/j.brainres.2015.03.025.

Zhou L, Xiong J, Ruan CS, Ruan Y, Liu D, Bao JJ, et al. ProBDNF/p75NTR/sortilin pathway is activated in peripheral blood of patients with alcohol dependence. Transl Psychiatry 2017;7:2. doi:10.1038/s41398-017-0015-4.

Haun HL, Griffin WC, Lopez MF, Solomon MG, Mulholland PJ, Woodward JJ, et al. Increasing Brain-Derived Neurotrophic Factor (BDNF) in medial prefrontal cortex selectively reduces excessive drinking in ethanol dependent mice. Neuropharmacology 2018;140:35–42. doi:10.1016/j.neuropharm.2018.07.031.

Martinowich K, Lu B. Interaction between BDNF and serotonin: Role in mood disorders. Neuropsychopharmacology 2008;33:73–83. doi:10.1038/sj.npp.1301571.

Popova NK, Ilchibaeva T V, Antonov E V, Pershina A V, Bazovkina DV, Naumenko VS. On the interaction between BDNF and serotonin systems: The effects of long-term ethanol consumption in mice. Alcohol 2020;87:1–15. doi:10.1016/j.alcohol.2020.04.002.




DOI: http://dx.doi.org/10.14748/bmr.v31.7707

Refbacks

Article Tools
Email this article (Login required)
About The Authors

Giampiero Ferraguti
Department of Experimental Medicine, Sapienza University Hospital of Rome
Italy

Claudia Codazzo
Department of Experimental Medicine, Sapienza University Hospital of Rome
Italy

Carla Petrella
Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome
Italy

Roberto Coccurello
Institute for Complex System, ISC-CNR, Rome
Italy

IRCCS - S. Lucia Foundation (FSL), Rome

Mauro Ceccanti
Centro Riferimento Alcologico Regione Lazio, ASL Roma 1, Rome
Italy

Marco Fiore
Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome
Italy

Font Size


|