Scientific Online Resource System

Biomedical Reviews

New challenges to renin-angiotensin-system in COVID-19 pandemic

Stanislav Yanev, Tsveta Stoyanova

Abstract

In the fight against the global epidemic from the new corona virus (SARS-CoV-2), awareness on the site of the primary viral attack, the so-called „entry port“ enables an implies efficient prophylactic/therapeutic approach. The attack is aimed at the important balancing unit of the renin-angiotensin system (RAS), angiotensin-converting enzyme 2 (ACE2), which regulates the level of angiotensin II (Ang II). While Ang II has vasoconstrictor and inflammatory functions, the ACE2 converted product of Ang-(1-7) possesses vasodilating and anti-inflammatory functions. In patients with pathological cardiovascular symptoms and increased blood pressure, maintenance of optimal Ang II is achieved by inhibiting the synthesizing enzyme ACE1 or blocking the angiotensin receptor response (ATR). In this Dance Round, an attempt is made to address the question: In the unbalanced functions of RAS (manifesting as an outcome of SARS-CoV-2 epidemic), will the therapeutic effect of ACE1 inhibitors change and in what direction?

Keywords

angiotensin, angiotensin-converting enzyme, ACE inhibitors, SARS-CoV-2, COVID-19

Full Text


References

Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450-454. [DOI: 10.1038/nature02145]

Zisman LS. ACE and ACE2: a tale of two enzymes. Eur Heart J 2005; 26(4): 322-324. [DOI: 10.1093/eurheartj/ehi043]

Pagliaro P, Penna C. ACE/ACE2 Ratio: A Key Also in 2019 Coronavirus Disease (Covid-19)? Front Med (Lausanne) 2020; 7(335. [DOI: 10.3389/fmed.2020.00335]

Soubrier F, Alhenc-Gelas F, Hubert C, Allegrini J, et al. Two Putative Active Centers in Human Angiotensin I-Converting Enzyme Revealed by Molecular Cloning. Proc Natl Acad Sci USA 1988; 85(24): 9386-9390.

Wei L, Clauser E, Alhenc-Gelas F, Corvol P. The two homologous domains of human angiotensin I-converting enzyme interact differently with competitive inhibitors. J Biol Chem 1992; 267(19): 13398-13405.

Bernstein KE, Ong FS, Blackwell WL, Shah KH, Giani JF, Gonzalez-Villalobos RA, et al. A Modern Understanding of the Traditional and Nontraditional Biological Functions of Angiotensin-Converting Enzyme. Pharmacol Rev 2013; 65(1): 1-46.

Jackson L, Eldahshan W, Fagan S, Ergul A. Within the Brain: The Renin Angiotensin System. Int J Mol Sci 2018; 19(3): 876.

Johansson B, Holm M, Ewert S, Casselbrant A, Pettersson A, Fändriks L. Angiotensin II type 2 receptor-mediated duodenal mucosal alkaline secretion in the rat. Am J Physiol-Gastroint Liver Physiol 2001; 280(6): G1254-G1260. [DOI: 10.1152/ajpgi.2001.280.6.G1254]

Paul M, Mehr AP, Kreutz R. Physiology of Local Renin-Angiotensin Systems. Physiol Rev 2006; 86(3): 747-803. [DOI: 10.1152/physrev.00036.2005]

Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Egido J. Inflammation and angiotensin II. Int J Biochem Cell Biol 2003; 35(6): 881-900. [DOI: 10.1016/S1357-2725(02)00271-6]

Pauls K, Metzger R, Steger K, Klonisch T, Danilov S, Franke FE. Isoforms of angiotensin I-converting enzyme in the development and differentiation of human testis and epididymis. Andrologia 2003; 35(1): 32-43.

Cushman DW, Cheung HS. Concentrations of angiotensin-converting enzyme in tissues of the rat. Biochim Biophys Acta Enzymol 1971; 250(1): 261-265. [DOI: 10.1016/0005-2744(71)90142-2]

Zhou Z, Cheng C, Li Y. Structure-based design and optimization of antihypertensive peptides to obtain high inhibitory potency against both renin and angiotensin I-converting enzyme. SAR QSAR Environ Res 2015; 26(12): 1001-1016. [DOI: 10.1080/1062936X.2015.1104725]

Guy JL, Lambert DW, Warner FJ, Hooper NM, Turner AJ. Membrane-associated zinc peptidase families: comparing ACE and ACE2. Biochim Biophys Acta 2005; 1751(1): 2-8. [DOI: 10.1016/j.bbapap.2004.10.010]

Guy JL, Jackson RM, Acharya KR, Sturrock ED, Hooper NM, Turner AJ. Angiotensin-converting enzyme-2 (ACE2): comparative modeling of the active site, specificity requirements, and chloride dependence. Biochemistry 2003; 42(45): 13185-13192. [DOI: 10.1021/bi035268s]

Cui H-T, Yu-Ting L, Li-Ying G, Xiang-Guo L, Lu-Shan W, Jian-Wei J, et al. Traditional Chinese medicine for treatment of coronavirus disease 2019: a review. Trad Med Res 2020; 5(2): 65-73.

Fraga-Silva RA, Costa-Fraga FP, Murca TM, Moraes PL, Martins Lima A, Lautner RQ, et al. Angiotensin-converting enzyme 2 activation improves endothelial function. Hypertension 2013; 61(6): 1233-1238. [DOI: 10.1161/HYPERTENSIONAHA.111.00627]

Prada JAH, Ferreira AJ, Katovich MJ, Shenoy V, Qi Y, Santos RAS, et al. Structure-Based Identification of Small-Molecule Angiotensin-Converting Enzyme 2 Activators as Novel Antihypertensive Agents. Hypertension 2008; 51(5): 1312-1317. [DOI: doi:10.1161/HYPERTENSIONAHA.107.108944]

Velkoska E, Patel SK, Burrell LM. Angiotensin con-verting enzyme 2 and diminazene: role in cardio-vascular and blood pressure regulation. Curr Opin Nephrol Hypert 2016; 25(5): 384-395. [DOI: 10.1097/MNH.0000000000000254]

Huang L, Sexton DJ, Skogerson K, Devlin M, Smith R, Sanyal I, et al. Novel peptide inhibitors of angiotensin-converting enzyme 2. J Biol Chem 2003; 278(18): 15532-15540. [DOI: 10.1074/jbc.M212934200]

Moccia F, Gerbino A, Lionetti V, Miragoli M, Munaron LM, Pagliaro P, et al. COVID-19-associated cardiovascular morbidity in older adults: a position paper from the Italian Society of Cardiovascular Researches. Geroscience 2020; 42(4): 1021-1049. [DOI: 10.1007/s11357-020-00198-w]

Diaz JH. Hypothesis: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19. J Travel Med 2020; 27(3):1-2. [DOI: 10.1093/jtm/taaa041]

Arai T, Sekizawa K, Ohrui T, Fujiwara H, Yoshimi N, Matsuoka H, et al. ACE inhibitors and protection against pneumonia in elderly patients with stroke. Neurology 2005; 64(3): 573-574. [DOI: 10.1212/01. wnl.0000150897.14961.0f]

aldeira D, Alarcão J, Vaz-Carneiro A, Costa J. Risk of pneumonia associated with use of angiotensin converting enzyme inhibitors and angiotensin receptor blockers: systematic review and meta-analysis. Br Med J 2012; 345(e4260. [DOI: 10.1136/bmj.e4260]

Sekizawa K, Matsui T, Nakagawa T, Nakayama K, Sasaki H. ACE inhibitors and pneumonia. Lancet 1998; 352(9133): 1069. [DOI: 10.1016/S0140-6736(05)60114-6]

Flacco ME, Acuti Martellucci C, Bravi F, Parruti G, Cappadona R, Mascitelli A, et al. Treatment with ACE inhibitors or ARBs and risk of severe/lethal COVID-19: a meta-analysis. Heart 2020; 106(19): 1519-1524. [DOI: 10.1136/heartjnl-2020-317336]

Hippisley-Cox J, Young D, Coupland C, Channon KM, Tan PS, Harrison DA, et al. Risk of severe COVID-19 disease with ACE inhibitors and angiotensin receptor blockers: cohort study including 8.3 million people. Heart 2020; 106(19): 1503-1511. [DOI: 10.1136/heartjnl-2020-317393]

Guo J, Huang Z, Lin L, Lv J. Coronavirus Disease 2019 (COVID-19) and Cardiovascular Disease: A Viewpoint on the Potential Influence of Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers on Onset and Severity of Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J Am Heart Assoc 2020; 9(7): e016219. [DOI: 10.1161/JAHA.120.016219]

Pergolizzi JV, Varrassi G, Magnusson P, LeQuang JA, Leopoulou M, Paladini A, et al. The concern about ACE/ARB and COVID-19: Time to hold your horses! J Am Pharm Ass 2020; 60(6): e88-e90. [DOI: 10.1016/j. japh.2020.06.026]

Rossi GP, Sanga V, Barton M. Potential harmful effects of discontinuing ACE-inhibitors and ARBs in COVID-19 patients. eLife 2020; 9(e57278. [DOI: 10.7554/eLife.57278]

Schiffrin EL, Flack JM, Ito S, Muntner P, Webb RC. Hypertension and COVID-19. Am J Hypert 2020; 33(5): 373-374. [DOI: 10.1093/ajh/hpaa057]

Sommerstein R, Kochen MM, Messerli FH, Gräni C. Coronavirus Disease 2019 (COVID‐19): Do Angiotensin Converting Enzyme Inhibitors/Angiotensin Receptor Blockers Have a Biphasic Effect? J Am Heart Ass 2020; 9(7): e016509. [DOI: doi:10.1161/JAHA.120.016509]

South AM, Tomlinson L, Edmonston D, Hiremath S, Sparks MA. Controversies of renin–angiotensin system inhibition during the COVID-19 pandemic. Nat Rev Nephrol 2020; 16(6): 305-307. [DOI: 10.1038/s41581-020-0279-4]

Sriram K, Insel PA. Risks of ACE Inhibitor and ARB Usage in COVID-19: Evaluating the Evidence. Clin Pharmacol Ther 2020; 108(2): 236-241. [DOI: 10.1002/cpt.1863]

Tetlow S, Segiet-Swiecicka A, O’Sullivan R, O’Halloran S, Kalb K, Brathwaite-Shirley C, et al. ACE-Inhibitors, Angiotensin Receptor Blockers and Endothelial Injury in COVID-19. J Intern Med 2020. [DOI: 10.1111/joim.13202]

Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin-Angiotensin-Aldosterone System Inhibitors in Patients with Covid-19. N Engl J Med 2020; 382(17): 1653-1659. [DOI: 10.1056/NEJMsr2005760]

Wang JJ, Edin ML, Zeldin DC, Li C, Wang DW, Chen C. Good or bad: Application of RAAS inhibitors in COVID-19 patients with cardiovascular comorbidities. Pharmacol Ther 2020; 215(107628. [DOI: 10.1016/j. pharmthera.2020.107628]

Wang K, Gheblawi M, Oudit GY. Angiotensin Converting Enzyme 2: A Double-Edged Sword. Circulation 2020.[DOI: 10.1161/CIRCULATIONAHA.120.047049]

Zhang P, Zhu L, Cai J, Lei F, Qin J-J, Xie J, et al. Association of Inpatient Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers With Mortality Among Patients With Hypertension Hospitalized With COVID-19. Circ Res 2020; 126(12): 1671-1681. [DOI: 10.1161/CIRCRESAHA.120.317134]

Leclézio A, Robinso J, Banerjee I. SARS-CoV-2: ACE inhibitors, disastrous or desirable? J Biomed Sci 2020; 7(1): 40-46. [DOI: 10.3126/jbs.v7i1.29852]

Koshy AN, Murphy AC, Farouque O, Ramchand J, Burrell LM, Yudi MB. Renin–angiotensin system inhibition and risk of infection and mortality in COVID-19: a systematic review and meta-analysis. Intern Med J 2020; 1-7. [DOI: 10.1111/imj.15002]

Battistoni A, Volpe M. Might renin–angiotensin system blockers play a role in the COVID-19 pandemic? Eur Heart J Cardiovasc Pharmacother 2020; 6(4): 248-251.[DOI: 10.1093/ehjcvp/pvaa030]

Froldi G. What could be the better choice between ACE inhibitors and AT1R antagonists in coronavirus disease 2019 (COVID-19) patients? J Med Virol 2020; 92(11): 2302-2303. [DOI: 10.1002/jmv.25974]

Messerli FH, Siontis GCM, Rexhaj E. COVID-19 and Renin Angiotensin Blockers: Current Evidence and Recommendations. Circulation 2020; 141(25): 2042-2044. [DOI: 10.1161/CIRCULATIONAHA.120.047022]

Aitken RJ. COVID-19 and human spermatozoa—Potential risks for infertility and sexual transmission?Andrology 2020; n/a(n/a): 1-5. [DOI: 10.1111/andr.12859]

Anifandis G, Messini CI, Daponte A, Messinis IE. COVID-19 and fertility: a virtual reality. Reprod BioMed Online 2020; 41(2): 157-159. [DOI: 10.1016/j. rbmo.2020.05.001]

Ojaghi M, Kastelic J, Thundathil J. Testis-specific isoform of angiotensin-converting enzyme (tACE) is involved in the regulation of bovine sperm capacitation. Mol Reprod Dev 2017; 84(5): 376-388. [DOI: doi:10.1002/mrd.22790]

Gianzo M, Urizar-Arenaza I, Muñoa-Hoyos I, Larreategui Z, Garrido N, Casis L, et al. Human sperm testicular angiotensin-converting enzyme helps determine human embryo quality. Asian J Androl 2018; 20(5): 498-504. [DOI: 10.4103/aja.aja_25_18]

Foresta C, Rocca MS, Di Nisio A. Gender susceptibility to COVID-19: a review of the putative role of sex hormones and X chromosome. J Endocrinol Invest 2020. [DOI: 10.1007/s40618-020-01383-6]

Wang Z, Xu X. scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. Cells 2020; 9(4). [DOI: 10.3390/cells9040920]

Reis FM, Bouissou DR, Pereira VM, Camargos AF, dos Reis AM, Santos RA. Angiotensin-(1-7), its receptor Mas, and the angiotensin-converting enzyme type 2 are expressed in the human ovary. Fert Steril 2011; 95(1):176-181. [DOI: 10.1016/j.fertnstert.2010.06.060]




DOI: http://dx.doi.org/10.14748/bmr.v31.7709

Refbacks

Article Tools
Email this article (Login required)
About The Authors

Stanislav Yanev
Institute of Neurobiology, Department of Drug Toxicology, Bulgarian Academy of Sciences, Sofia
Bulgaria

Tsveta Stoyanova
Institute of Neurobiology, Department of Drug Toxicology, Bulgarian Academy of Sciences, Sofia
Bulgaria

Font Size


|