Scientific Online Resource System

Biomedical Reviews

Concept of metabotrophins: beginning and prospective growth

Luigi Aloe, Anton B. Tonchev, Marcia Hiriart, Marco Fiore, Manlio Vinciguerra, Mariana G. Hristova, Gorana Rancic, Alexander Maucher, Stanislav Yanev, William Moreno, Gyurdzhan Edzhabi, George N. Chaldakov

Abstract

Since 2003, we have been focusing on metabotrophic factors (MTF), collectively named metabotrophins (MTs) (from Greek me- tabole – “a change”, and trophe – “nutrition”, means “nutritious for metabolism”). These are signaling proteins which improve glucose, lipid and energy metabolism, also affect positively cardiovascular and cognitive functions. They derived from various tissues, we focused on those secreted by adipose and skeletal muscle tissue. Examples include NGF, BDNF, NT-3, FGF21, GDF11, adiponectin, leptin, irisin, visfatin, meteorin, sirtuin-2, Klotho, etc. The present review highlights the beginning and perspective growth of our concept of a pivotal role of MTs in the pathogenesis and therapy of obesity-related cardiometabolic diseases (e.g., atherosclerosis, hypertension, obesity, type 2 diabetes mellitus and metabolic syndrome) and neurometabolic diseases (e.g., Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis).

Keywords

adipokines, NGF, BDNF, metabotrophic factors, metabotrophins, cardiometabolic diseases, Alzheimer’s disease

Full Text


References

Chaldakov GN, Fiore M, Hristova MG, Aloe L. Metabotrophic potential of neurotrophins: implication in obesity and related diseases? Med Sci Monit 2003; 9:HY19-21. PMID:14523335

Chaldakov GN, Fiore M, Tonchev AB, Aloe L. Adi- popharmacology, a novel drug discovery approach: a metabotrophic perspective. Lett Drug Design Discov 2006; 3: 503–505. DOI:10.2174/157018006778194835

Chaldakov GN, Fiore M, Tonchev AB, Dimitrov D, Pancheva R, Rancic G, Aloe L. Homo obesus: a me- tabotrophin-deficient species. Pharmacology and nutri- tion insight. Cur Pharm Design 2007; 13: 2176–2179. DOI: 10.2174/138161207781039616

Chaldakov GN, Aloe L, Vinciguerra M, Tonchev AB, Fiore M, Oztürk L. Adipomyobiology of obesity and related diseases: therapy insights. Adipobiology 2021; 11: 27-34. DOI:10.14748/adipo.v11.8561

Yanev S, Aloe L, Fiore F, Chaldakov GN. Neurotrophic and metabotrophic potential of nerve growth factor and brain-derived neurotrophic factor: Linking cardiometabolic and neuropsychiatric diseases. World J Pharmacol 2013; 2: 92-99. DOI:10.5497/wjp.v2.i4.92

Chaldakov GN, Fiore M, Ghenev PI, Beltowski J, Rancic G, Tunçel N, Aloe L. Triactome: neuro-immune-adipose interactions. Implication in vascular biology. Front Im- munol 2014; 5: 130. doi: 10.3389/fimmu.2014.00130

Frohlich J, Chaldakov GN, Vinciguerra M. Cardio- and neurometabolic adipobiology: Consequences and implications for therapy. Int J Mol Sci 2021; 22(8): 4137. DOI:10.3390/ijms22084137

Aloe L, Vinciguerra M, Tonchev AB, Fiore M, Deleva N, Frohlich J, et al. A growing journey from neurotrophins to metabotrophins in cardiometabolic diseases. Adipobiology 2021; 11: 5-10. DOI:10.14748/adipo.v11.8558

Chaldakov GN, Aloe A, Rancic G, Pancheva RZ, Hiriart M, Fiore M, Yanev S. Chapter 16. The Relevance of Me- tabotrophic Factors in Pathobiology and Therapy of Obe- sity and Related Diseases. In: P.S. Tappia et al. (eds.), Cellular and Biochemical Mechanisms of Obesity, Advances in Biochemistry in Health and Disease 23. Springer Nature Switzerland AG 2021. DOI:10.1007/978-3-030- 84763-0_16

Frohlich J, Kovacovicova K, Virglova T, Raffaele M, Cizkova E, Kucera J, et al. GDF11 inhibits adipogenesis and improves mature adipocytes metabolic function via WNT/β-catenin and ALK5/SMAD2/3 pathways. Cell Prolif 2022;e13310. DOI: 10.1111/cpr.13310

Chaldakov GN, Stankulov IS, Hristova M, Ghenev PI. Adipobiology of disease: adipokines and adipokine-targeted pharmacology. Curr Pharm Des 2003; 9: 1023- 1031. doi:10.2174/1381612033455152

Renes J, Mariman E. Application of proteomics technology in adipocyte biology. Mol Biosyst 2013; 9:1076-1091. DOI:10.1039/c3mb25596d

Sacks H, Symonds ME. Anatomical locations of human brown adipose tissue functional relevance and implications in obesity and type 2 diabetes. Diabetes 2013; 62: 1783-1790. DOI:10.2337/db12-1430

Iacobellis G, Di Gioia C, Petramala L, Chiappetta C, Serra V, Zinnamosca L, et al. Brown fat expresses adiponectin in humans. Int J Endocrinol 2013: 126751. DOI:10.1155/2013/126751

Sornelli F, Fiore M, Chaldakov GN, Aloe L. Adipose tissue-derived nerve growth factor and brain-derived neurotrophic factor: results from experimental stress and diabetes. Gen Physiol Biophys 2009; 28: 179-183.

Chaldakov GN, Fiore M, Stankulov IS, Manni L, Hristova MG, Antonelli A, et al. Neurotrophin presence in human coronary atherosclerosis and metabolic syndrome: a role for NGF and BDNF in cardiovascular disease? Prog Brain Res 2004;146:279-89. DOI:10.1016/S0079- 6123(03)46018-4

Hausman GJ, Barb CR, Dean RG. Patterns of gene expression in pig adipose tissue: Insulin-like growth factor system proteins, neuropeptide Y (NPY), NPY receptors, neurotrophic factors and other secreted factors. Domest Anim Endocrinol 2008;35:24-34. DOI:10.1016/j.dom- aniend.2008.01.004

Gomez-Pinilla F, Vaynman S, Ying Z. Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur J Neurosci 2008;28(11):2278-2287. DOI:10.1111/j.1460- 9568.2008.06524.x

Sridhar GR, Lakshmi G. Target adipose tissue nerves to treat obesity: Special reference to β3 adrenoceptor agonists. Adipobiology 2021; 11: 35-40. DOI: 10.14748/adipo.v11.8562

Manni L, Nikolova V, Vyagova D, Chaldakov GN, Aloe

L. Reduced plasma levels of NGF and BDNF in patients with acute coronary syndromes. Int J Cardiol 2005; 102: 169-171. DOI:10.1016/j.ijcard.2004.10.041

Ejiri J, Inoue N, Kobayashi S, Shiraki R, Otsui K, Honjo T, et al. Possible role of brain-derived neurotrophic factor in the pathogenesis of coronary artery disease. Circulation 2005; 112: 2114-212020.

de la Monte S, Wands JR. Alzheimer’s disease is type 3 diabetes – evidence reviewed. J Diab Sci Technol 2008; 2: 1101-1113.

Dar TA, Sheikh IA, Ganie SA, Ali R, Singh LR, Gan SH, et al. Molecular linkages between diabetes and Alzheimer’s disease: Current scenario and future prospects. CNS Neurol Disord Drug Targets 2014; 13: 290-298

Markowicz-Piasecka M, Sikora J, Szydłowska A, Skupień A, Mikiciuk-Olasik E, Huttunen KM. Metformin – a Future Therapy for Neurodegenerative Diseases. Pharm Res 2017; 34(12): 2614–2627. DOI: 10.1007/s11095-017-2199-y

Carito V, Ceccanti M, Tarani L, Ferraguti G, Chaldakov GN, Fiore M. Neurotrophins‘ Modulation by Olive Poly- phenols. Curr Med Chem 2016;23(28):3189-3197. DOI: 10.2174/0929867323666160627104022

Letra L, Santana I.The Influence of Adipose Tissue on Brain Development, Cognition, and Risk of Neurodegenerative Disorders. Adv Neurobiol 2017;19:151-161. DOI:10.1007/978-3-319-63260-5_6

Sposato V, Manni L, Chaldakov GN, Aloe L. Streptozotocin-induced diabetes is associated with changes in NGF levels in pancreas and brain. Arch Ital Biol 2007; 145: 87-97.

Larrieta ME, Vital P, Mendoza-Rodriguez A, Cerbón M, Hiriart M. Nerve growth factor increases in pancreatic beta cells after streptozotocin-induced damage in rats. Exp Biol Med (Maywood) 2006; 231: 396-402.

Karatzas A, Katsanos K, Lilis I, Papadaki H, Kitrou P, Lecht S, et al. NGF promotes hemodynamic recovery in a rabbit hindlimb ischemic model through TrkA- and VEGFR2-dependent pathways. J Cardiovasc Pharma- col 2013; 62: 270-277.

Aloe L, Rocco ML, Bianchi P, Manni L. Nerve growth factor: from the early discoveries to the potential clinical use. J Transl Med 2012; 10:239. DOI: 10.1186/1479- 5876-10-239.

Perry T, Lahiri DK, Chen D, Zhou J, Shaw KT, Egan JM, et al. A novel neurotrophic property of glucagon-like peptide 1: a promoter of nerve growth factor-mediated differentiation in PC12 cells. J Pharmacol Exp Ther 2002; 300: 958-966.

Li L. Is glucagon-like peptide-1, an agent treating diabetes, a new hope for Alzheimer’s disease? Neurosci Bull 2007; 23: 58-65.

Hoang PT, Park P, Cobb LJ, Paharkova-Vatchkova V, Hakimi M, Cohen P, et al. The neurosurvival factor Humanin inhibits beta-cell apoptosis via signal transducer and activator of transcription 3 activation and delays and ameliorates diabetes in nonobese diabetic mice. Metabolism 2010; 59: 343-349.

Mahboobi H, Golmirzaei J, Gan SH, Jalalian M, Jalalian

M. Humanin: a possible linkage between Alzheimer’s disease and type 2 diabetes. CNS Neurol Disord Drug Targets 2014;13(3):543-552. DOI:10.2174/187152731 2666131223110147.

Novelle MG, Contreras C, Romero-Picó A, López M, Diéguez C. Irisin, two years later. Int J Endocrinol 2013: 746281.

Imai S. “Clocks” in the NAD World: NAD as a metabolic oscillator for the regulation of metabolism. Biochim Biophys Acta - Proteins and Proteomics. 2010; 1804: 1584-1590. DOI: 10.1016/j.bbapap.2009.10.024

Rao AA. Views and opinion on BDNF as a target for diabetic cognitive dysfunction. Bioinformation 2013; 9: 551-554.

Meek TH, Wisse BE, Thaler JP, Guyenet SJ, Matsen ME, Fischer JD, et al. BDNF action in the brain attenuates diabetic hyperglycemia via insulin-independent inhibi- tion of hepatic glucose production. Diabetes 2013; 62: 1512-1518.

Byerly MS, Swanson RD, Semsarzadeh NN, McCulloh PS, Kwon K, Aja S, et al. Identification of hypothalamic neuron-derived neurotrophic factor as a novel factor modulating appetite. Am J Physiol Regul Integr Comp Physiol 2013; 304: R1085-R1095.

Jackson HM, Soto I, Graham LC, Carter GW, Howell GR. Clustering of transcriptional profiles identifies changes to insulin signaling as an early event in a mouse model of Alzheimer’s disease. BMC Genomics 2013; 14: 831.

O’Neill C, Kiely AP, Coakley MF, Manning S, Long-Smith CM. Insulin and IGF-1 signaling: longevity, protein homoeostasis and Alzheimer’s disease. Biochem Soc Trans 2012; 40: 721-727.

de la Monte SM. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 2012; 9: 35-66.

Hildreth KL, Van Pelt RE, Schwartz RS. Obesity, insulin resistance, and Alzheimer’s disease. Obesity 2012; 20: 1549-1557.

Luchsinger JA, Mayeux R. Adiposity and Alzheimer’s disease. Curr Alzheimer Res 2007; 4:127-134.

Naderali EK, Ratcliffe SH, Dale MC. Review: obesity and Alzheimer’s disease: a link between body weight and cognitive function in old age. Am J Alzheimers Dis Other Demen 2009; 24: 445-449.

Frisardi V, Solfrizzi V, Seripa D, Capurso C, Santamato A, Sancarlo D, et al. Metabolic-cognitive syndrome: A cross-talk between metabolic syndrome and Alzheimer’s disease. Ageing Res Rev 2010; 9: 399-417.

Triaca V. Homage to Rita Levi-Montalcini. Molecular mechanisms of Alzheimer’s disease: NGF modula- tion of APP processing. Adipobiology 2013; 5: 7-18. Note: After Alois Alzheimer’s clinical report of “presenile dementia” on 3 November 1906, the first Ital- ian contributions to the histopathological and clinical description of Alzheimer’s dementia were published by Gaetano Perusini in three papers between 1906 and 1911 (see Lucci B. The contribution of Gaetano Perusini to the definition of Alzheimer’s disease. Ital J Neurol Sci 1998; 19: 49-52).

Aloe L, Tonchev AB, Maucher A, Fiore M, Zhelezov MD, Chaldakov GN, et al. Adipobiology of the brain: From brain diabetes to adipose Alzheimer’s disease. Adiopobiolgy 2015; 7:37-42. DOI:10.14748/adipo.v7.1559

Freeman LR, Zhang L, Dasuri K, Fernandez-Kim SO, Bruce-Keller AJ, Keller JN. Mutant amyloid precursor protein differentially alters adipose biology under obeso- genic and non-obesogenic conditions. PLoS One 2012; 7:e43193. DOI: 10.1371/journal.pone.0043193.

Lee YH, Tharp WG, Maple RL, Nair S, Permana PA, Pratley RE. Amyloid precursor protein expression is upregulated in adipocytes in obesity. Obesity (Silver Spring) 2008; 16:1493-1500. DOI: 10.1038/oby.2008.267.

Katsuda T, Katsuda T, Tsuchiya R, Kosaka N, Yoshioka Y, Takagaki K, et al. Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 2013; 3:1197. doi: 10.1038/srep01197.

Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 2013;138(2):155-75. DOI: 10.1016/j.pharmthera.2013.01.004

Colafrancesco V, Villoslada P. Targeting NGF pathway for developing neuroprotective therapies for multiple sclerosis and other neurological diseases. Arch Ital Biol 2011;149(2):183-92. DOI: 10.4449/aib.v149i2.1376

Kim S, Kwon S-H, Kam T-I, Panicker N, Karuppagounder SS, Lee S, et al. Transneuronal Propagation of Pathologic α-Synuclein from the Gut to the Brain Models Parkinson‘s Disease. Neuron 2019;103(4):627-641.e7. DOI: 10.1016/j.neuron.2019.05.035

Fontoura P. Digiceuticals: the next frontier for people with neurological conditions? In: Global Head and SVP Neuroscience, Immunology, Ophthalmology, Infectious and Rare Diseases at Roche. 2020




DOI: http://dx.doi.org/10.14748/bmr.v33.9117

Refbacks

Article Tools
Email this article (Login required)
About The Authors

Luigi Aloe
Fondazione Iret, Tecnopolo R. Levi-Montalcini, Rome
Italy

Anton B. Tonchev
Medical University of Varna
Bulgaria

Department of Anatomy and Cell Biology

Marcia Hiriart
Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City
Mexico

Marco Fiore
Institute of Biochemistry and Cell Biology, Section of Neurobiology Rita Levi-Montalcini, National Research Council (CNR), Rome
Italy

Manlio Vinciguerra
Medical University of Varna
Bulgaria

Department of Translational Stem Cell Biology, Research Institute

Mariana G. Hristova
Endocrinology Division, Medical Center, Asparuhovo, Varna
Bulgaria

Gorana Rancic
Department of Histology and Embryology, Medical Faculty, University of Niš
Serbia

Alexander Maucher
Universitätsklinikum, Freiburg
Germany

Stanislav Yanev
Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia
Bulgaria

William Moreno
Phlebology Clinic, Bogotá D.C.
Colombia

Gyurdzhan Edzhabi
Medical University of Varna
Bulgaria

Department of Disaster Medicine

George N. Chaldakov
Medical University of Varna
Bulgaria

Department of Anatomy and Cell Biology and Cell Biology and Translational Stem Cell Biology, Research Institute

Font Size


|