Aim: The aim of this article is to generate the normative data of macular ganglion cell layer-inner plexiform layer (GCL+IPL) thickness, macular internal limiting membrane-retinal pigment epithelium (ILM-RPE) thickness, as well as foveal avascular zone (FAZ) metrics, including FAZ vessel density and FAZ perfusion density in healthy individuals. It aimed to evaluate the influence of gender and age over these parameters.
Materials and Methods: A total of 122 eyes of 63 healthy individuals aged between 6 and 78 years, with no ocular disease and best corrected visual acuity of 20/20, were scanned using ZEISS CIRRUS HD-OCT. The protocols used in the study were macular thickness analysis, ganglion cell analysis and the AngioPlex OCT angiography scan, which allows visualization of retinal and choroidal vasculature without the need for contrast dye injection.
Results: The mean thickness of the complex GCL + IPL in the macula was 81.80 ± 7.81 μm. The mean thickness of the retina from ILM-RPE in the macular area was 283.13 ± 13.04 μm.
The mean and the minimum GCL + IPL thickness in the macula, ILM-RPE thickness in the macular area and the average volume of the macular cube showed significant negative correlation with age. In females the mean GCL+IPL thickness in the macula was significantly higher. We have not found significant correlation between genders and the mean ILM-RPE thickness in the macular area and the average volume of the macular cube. ILM-RPE mean thickness in the central subfield of the macular area showed significant positive correlation with male gender.
The average area of FAZ was 0.245 ± 0.1 mm2. The mean vascular density in the central FAZ was 9.36 ± 3.12 mm-1, and the average of the entire FAZ was 17.34 ± 2.18 mm-1. The average perfusion density in FAZ was 42 ± 5%. FAZ area and FAZ perimeter showed negative but not significant correlation with age and significant positive correlation with female gender.
Conclusion: Our findings provide normative database for macular parameters in healthy individuals, which is important for early diagnosis and evaluation of pathological changes in various retinal diseases.Mwanza JC, Oakley JD, Budenz DL, Anderson DR. Ability of CirrusTM HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmology. 2011;118(2):241-8.e1. doi: 10.1016/j.ophtha.2010.06.036.
Knight OJ, Girkin CA, Budenz DL, Durbin MK, Feuer WJ. Effect of race, age, and axial length on optic nerve head parameters and retinal nerve fiber layer thickness measured by Cirrus HD-OCT. Arch Ophthalmol. 2012;130(3):312-8. doi: 10.1001/archopthalmol.2011.1576.
Murthy RK, Haji S, Sambhav K, Grover S, Chalam KV. Clinical applications of spectral domain optical coherence tomography in retinal diseases. Biomed J. 2016;39(2):107–20. doi: 10.1016/j.bj.2016.04.003.
Musat O, Colta D, Cernat C, Boariu AM, Alexandru L, Georgescu R, et al. New perspectives in retinal imaging - angio OCT. Rom J Ophthalmol. 2016;60(2):63–7.
Spaide RF, Klancnik JM, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133(1):45–50. doi: 10.1001/jamaophthalmol.2014.3616.
Shiihara H, Terasaki H, Sonoda S, Kakiuchi N, Shinohara Y, Tomita M, et al. Objective evaluation of size and shape of superficial foveal avascular zone in normal subjects by optical coherence tomography angiography. Sci Rep. 2018;8(1):10143. doi: 10.1038/s41598-018-28530-7.
Won JY, Kim SE, Park YH. Effect of age and sex on retinal layer thickness and volume in normal eyes. Medicine (Baltimore). 2016; 95(46):e5441. doi: 10.1097/MD.0000000000005441.
Nieves-Moreno M, Martínez-de-la-Casa JM, Morales-Fernández L, Sánchez-Jean R, Sáenz-Francés F, García-Feijoó J. Impacts of age and sex on retinal layer thicknesses measured by spectral domain optical coherence tomography with Spectralis. PloS One. 2018;13(3):e0194169. doi: 10.1371/journal.pone.0194169. eCollection 2018.
Ooto S, Hangai M, Tomidokoro A, Saito H, Araie M, Otani T, et al. Effects of age, sex, and axial length on the three-dimensional profile of normal macular layer structures. Invest Ophthalmol Vis Sci. 2011;52(12):8769–79. doi: 10.1167/iovs.11-8388.
Iafe NA, Phasukkijwatana N, Chen X, Sarraf D. Retinal capillary density and foveal avascular zone area are age-dependent: Quantitative analysis using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(13):5780–7. doi: 10.1167/iovs.16-20045.
Falavarjani KG, Shenazandi H, Naseri D, Anvari P, Kazemi P, Aghamohammadi F, et al. Foveal avascular zone and vessel density in healthy subjects: An optical coherence tomography angiography study. J Ophthalmic Vis Res. 2018;13(3):260–5. doi: 10.4103/jovr.jovr_173_17.
Wang M, Hood DC, Cho J-S, Ghadiali Q, De Moraes GV, Zhang X, et al. Measurement of local retinal ganglion cell layer thickness in patients with glaucoma using frequency-domain optical coherence tomography. Arch Ophthalmol. 2009;127(7):875–81. doi: 10.1001/archophthalmol.2009.145.
Bagci AM, Shahidi M, Ansari R, Blair M, Blair NP, Zelkha R. Thickness profiles of retinal layers by optical coherence tomography image segmentation. Am J Ophthalmol. 2008;146(5):679–87. doi: 10.1016/j.ajo.2008.06.010.
Mwanza J-C, Durbin MK, Budenz DL, Girkin CA, Leung CK, Liebmann JM, et al. Profile and predictors of normal ganglion cell–inner plexiform layer thickness measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(11):7872–9. doi: 10.1167/iovs.11-7896.
Arepalli S, Srivastava SK, Hu M, Kaiser PM, Dukles N, Reese JL, et al. Assessment of inner and outer retinal layer metrics on the Cirrus HD-OCT Platform in normal eyes. PLoS ONE 2018;13(10):e0203324. doi: 10.1371/journal.pone.0203324.
Buehren T, Durbin M, Kunath-Fandrei G, Whitby M, Meyer S. Retinal layer segmentation and interpretation using high-definition optical coherence tomography. Invest Ophthalmol Vis Sci. 2008;49(13):1881.
Guo J, She X, Liu X, Sun X. Repeatability and reproducibility of foveal avascular zone area measurements using AngioPlex spectral domain optical coherence tomography angiography in healthy subjects. Ophthalmologica. 2017;237(1):21–8. doi: 10.1159/000453112.
Zivkovic M, Dayanir V, Kocaturk T, Zlatanovic M, Zlatanovic G, Jaksic V, et al. Foveal avascular zone in normal tension glaucoma measured by optical coherence tomography angiography. BioMed Res Int. 2017;2017:1–7. doi: 10.1155/2017/3079141.
Magrath GN, Say EAT, Sioufi K, Ferenczy S, Samara WA, Shields CL. Variability in foveal avascular zone and capillary density using optical coherence tomography angiography machines in healthy eyes. Retina. 2017;37(11):2102-11. doi: 10.1097/IAE.0000000000001458.
Al-Sheikh M, Tepelus TC, Nazikyan T, Sadda SR. Repeatability of automated vessel density measurements using optical coherence tomography angiography. Br J Ophthalmol. 2017;101(4):449–52. doi: 10.1136/bjophthalmol-2016-308764.
Durbin MK, An L, Shemonski ND, Soares M, Santos T, Lopes M, et al. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. 2017;135(4):370–6. doi: 10.1001/jamaophthalmol.2017.0080.
Fujiwara A, Morizane Y, Hosokawa M, Kimura S, Shiode Y, Hirano M, et al. Factors affecting foveal avascular zone in healthy eyes: An examination using swept-source optical coherence tomography angiography. PLoS ONE. 2017; 12(11):e0188572. doi: 10.1371/journal.pone.0188572.