Scientific Online Resource System

Bulgarian Review of Ophthalmology

Morphological and functional evaluation of oral nutritional supplements in primary open-angle glaucoma treatment—first results

Konstantina Kancheva, Zornitsa Zlatarova



Glaucoma is a chronic progressive optic neuropathy characterized by pathological degeneration of retinal ganglion cells (RGCs), with structural damage to the optic nerve and visual field loss.

Aim: To study the effect of the oral dietary supplement MieloOptik as an adjuvant therapy in patients with primary open-angle glaucoma (POAG).

Materials and Methods: This study included examination results of both eyes of 60 patients with POAG. The patients were randomly divided into 2 groups of 30 participants, aged 50–75 years, who were receiving topical anti-glaucoma therapy, with intraocular pressure (IOP) values between 14 and 21 mmHg. The patients from group A took the dietary supplement MieloOptik for a period of 6 months. Those in group B did not take any nutritional supplements that could positively or negatively affect the results of the study. All patients underwent a complete ophthalmological examination, including best-corrected visual acuity examination for each eye, Goldmann tonometry, ophthalmoscopy, gonioscopy, pachymetry, standard automated perimetry (SAP), and optical coherence tomography (OCT) at the start of the study and after 6 months.

Results: After 6 months, the mean deviation (MD) values from SAP in group A was statistically significantly lower (p < 0.05), by 0.59, than those at baseline. The pattern standard deviation (PSD) values of group A were statistically significantly lower (p < 0.05), by 0.69, than those at baseline. Both MD and PSD significantly (p < 0.05) decreased over time. The corresponding parameters in group B patients showed a statistically significant deterioration (p < 0.05) during the 6-month observation period.

Conclusion: These findings suggest that taking the nutritional supplement MieloOptik as adjuvant therapy for patients with POAG appears to be effective in slowing the progression of the disease. Further studies on a larger population and with longer follow-up are needed to confirm this pilot investigation.


glaucoma; MieloOptik; neuroprotection; neuroregeneration; SAP

Full Text


Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. Lancet. 2017 Nov 11;390(10108):2183-93. doi: 10.1016/S0140-6736(17)31469-1.

GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study. Lancet Glob Health. 2021;9(2):e130-43. doi: 10.1016/S2214-109X(20)30425-3.

Gandolfi S, Marchini G, Caporossi A, Scuderi G, Tomasso L, Brunoro A. Cytidine 5'-Diphosphocholine (Citicoline): Evidence for a Neuroprotective Role in Glaucoma. Nutrients. 2020;12(3):793. doi:10.3390/nu12030793

The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration.The AGIS Investigators. Am J Ophthalmol. 2000;130(4):429-40. doi: 10.1016/s0002-9394(00)00538-9.

Fogagnolo P, Rossetti L. Medical treatment of glaucoma: present and future. Expert Opin Investig Drugs. 2011;20(7):947-59. doi: 10.1517/13543784.2011.579901.

Peters D, Bengtsson B, Heijl A. Lifetime risk of blindness in open-angle glaucoma. Am J Ophthalmol. 2013;156(4):724-30. doi: 10.1016/j.ajo.2013.05.027.

Weinreb RN. Glaucoma neuroprotection: What is it? Why is it needed? Can. J. Ophthalmol. 2007;42(3):396–8. doi: 10.3129/i07-045.

Pescosolido N, Giannotti R, Plateroti AM, Pascarella A, Nebbioso M. Curcumin: therapeutical potential in ophthalmology. Planta Med. 2014;80(4):249-54. doi: 10.1055/s-0033-1351074.

Pooler AM, Guez DH, Benedictus R, Wurtman RJ. Uridine enhances neurite outgrowth in nerve growth factor-differentiated PC12 [corrected]. Neuroscience. 2005;134(1):207-14. doi: 10.1016/j.neuroscience.2005.03.050.

Cansev M. Uridine and cytidine in the brain: their transport and utilization. Brain Res Rev. 2006;52(2):389-97. doi: 10.1016/j.brainresrev.2006.05.001.

Holguin S, Martinez J, Chow C, Wurtman R. Dietary uridine enhances the improvement in learning and memory produced by administering DHA to gerbils. FASEB J. 2008;22(11):3938-46. doi: 10.1096/fj.08-112425.

Pinazo-Durán MD, Gallego-Pinazo R, García-Medina JJ, Zanón-Moreno V, Nucci C, Dolz-Marco R, et al. Oxidative stress and its downstream signaling in aging eyes. Clin Interv Aging. 2014;9:637-52. doi: 10.2147/CIA.S52662.

Zanon-Moreno V, Marco-Ventura P, Lleo-Perez A, Pons-Vazquez S, Garcia-Medina JJ, Vinuesa-Silva I, et al. Oxidative stress in primary open-angle glaucoma. J Glaucoma. 2008;17(4):263-8. doi: 10.1097/IJG.0b013e31815c3a7f.

Adornetto A, Rombolà L, Morrone LA, Nucci C, Corasaniti MT, Bagetta G, et al. Natural products: evidence for neuroprotection to be exploited in glaucoma. Nutrients. 2020;12(10):3158. doi: 10.3390/nu12103158.

Wang L, Li C, Guo H, Kern TS, Huang K, Zheng L. Curcumin inhibits neuronal and vascular degeneration in retina after ischemia and reperfusion injury. PLoS One. 2011;6(8):e23194. doi: 10.1371/journal.pone.0023194.

Matteucci A, Frank C, Domenici MR, Balduzzi M, Paradisi S, Carnovale-Scalzo G, et al. Curcumin treatment protects rat retinal neurons against excitotoxicity: effect on N-methyl-D: -aspartate-induced intracellular Ca(2+) increase. Exp Brain Res. 2005;167(4):641-8. doi: 10.1007/s00221-005-0068-0.

Al N, Çakir A, Koç C, Cansev M, Alkan T. Antioxidative effects of uridine in a neonatal rat model of hyperoxic brain injury. Turk J Med Sci. 2020;50(8):2059-66. doi: 10.3906/sag-2002-14.

Lem DW, Gierhart DL, Davey PG. Carotenoids in the management of glaucoma: a systematic review of the evidence. Nutrients. 2021;13(6):1949. doi: 10.3390/nu13061949.

Asregadoo ER. Blood levels of thiamine and ascorbic acid in chronic open-angle glaucoma. Ann Ophthalmol. 1979;11(7):1095-100.

Ramdas WD, Wolfs RC, Kiefte-de Jong JC, Hofman A, de Jong PT, Vingerling JR, et al. Nutrient intake and risk of open-angle glaucoma: the Rotterdam Study. Eur J Epidemiol. 2012;27(5):385-93. doi: 10.1007/s10654-012-9672-z.

Kang KD, Majid AS, Kim KA, Kang K, Ahn HR, Nho CW, et al. Sulbutiamine counteracts trophic factor deprivation induced apoptotic cell death in transformed retinal ganglion cells. Neurochem Res. 2010;35(11):1828-39. doi: 10.1007/s11064-010-0249-5.

Jung KI, Kim YC, Park CK. Dietary niacin and open-angle glaucoma: The Korean National Health and Nutrition Examination Survey. Nutrients. 2018;10(4):387. doi: 10.3390/nu10040387.

Türkyilmaz K, Oner V, Ozkasap S, Sekeryapan B, Dereci S, Durmus M. Peripapillary retinal nerve fiber layer thickness in children with iron deficiency anemia. Eur J Ophthalmol. 2013;23(2):217-22. doi: 10.5301/ejo.5000206.

Sasaki T, Murata M, Amemiya T. Effect of long-term treatment of glaucoma with vitamin B-12. Glaucoma. 1992;14:167–70.

Belmonte A, Tormo C, Lopez N, Villalba C, Fernandez C, Hernandez F. Vitamins A, E, B12 and folate levels in different types of glaucoma. Clin Chem Lab Med. 2011;49:S816.

Cumurcu T, Sahin S, Aydin E. Serum homocysteine, vitamin B 12 and folic acid levels in different types of glaucoma. BMC Ophthalmol. 2006;6:6. doi: 10.1186/1471-2415-6-6.

Xu F, Zhao X, Zeng SM, Li L, Zhong HB, Li M. Homocysteine, B vitamins, methylenetetrahydrofolate reductase gene, and risk of primary open-angle glaucoma: a meta-analysis. Ophthalmology. 2012;119(12):2493-9. doi: 10.1016/j.ophtha.2012.06.025.

Roedl JB, Bleich S, Reulbach U, von Ahsen N, Schlötzer-Schrehardt U, Rejdak R, et al. Homocysteine levels in aqueous humor and plasma of patients with primary open-angle glaucoma. J Neural Transm (Vienna). 2007;114(4):445-50. doi: 10.1007/s00702-006-0556-9.

Li J, Xu F, Zeng R, Gong H, Lan Y. Plasma homocysteine, serum folic acid, serum vitamin B12, serum vitamin B6, MTHFR, and risk of normal-tension glaucoma. J Glaucoma. 2016;25(2):e94-8. doi: 10.1097/IJG.0000000000000269.

Leibovitzh H, Cohen E, Levi A, Kramer M, Shochat T, Goldberg E, Krause I. Relationship between homocysteine and intraocular pressure in men and women: A population-based study. Medicine (Baltimore). 2016;95(38):e4858. doi: 10.1097/MD.0000000000004858.

Rössler CW, Baleanu D, Reulbach U, Lewczuk P, Bleich S, Kruse FE, et al. Plasma homocysteine levels in patients with normal tension glaucoma. J Glaucoma. 2010;19(9):576-80. doi: 10.1097/IJG.0b013e3181ca7c90.

Giaconi JA, Yu F, Stone KL, Pedula KL, Ensrud KE, Cauley JA, et al. The association of consumption of fruits/vegetables with decreased risk of glaucoma among older African-American women in the study of osteoporotic fractures. Am J Ophthalmol. 2012;154(4):635-44. doi: 10.1016/j.ajo.2012.03.048.



Font Size

About The Authors

Konstantina Kancheva
Specialized Eye Hospital, Burgas

Department of Ophthalmology and Vision Sciences, Faculty of Medicine, Medical University of Varna

Zornitsa Zlatarova
Medical University of Varna

Department of Optometry and Occupational Diseases, Faculty of Public Health