Scientific Online Resource System

Conference Proceedings

Different faces of inflammation, considered upon the expression of micro-RNA-155

Antoniya Atanasova

Abstract

Introduction: Over 60% of all the genes that code proteins are regulated by miRNA. One miRNA has an average of 200 targets. Disturbed regulation of specific micro-RNAs leads to the development of different diseases in humans: metabolic, cardiovascular, liver, neurodegenerative, immune-mediated diseases, immune dysfunctions, as well as appearance of neoplasms.

Aim: The aim of the following article is to conduct a review of micro-RNA expression and its regulatory role over inflammatory processes in central nervous system, in the course of some infectious diseases, in degenerative injuries of the musculoskeletal system and in some immune-mediated diseases.

Materials and Methods: For the period 2002 - July 2020 in the accessible science databases (Scopus, ScienceDirect, Web of Science, Access Medicine, PubMed) the following keywords in English were used: micro-RNA-155, biomarkers, inflammation, central nervous system, musculoskeletal diseases, immune-mediated diseases, human nucleic acids (DNA and microRNA).  

Results: MiR-155 is the main pro-inflammatory mediator in CNS whose expression is induced in macrophages and microglia in response to NF-B dependent TNF signaling pathway. Targets of miR-155 include pro-inflammatory regulators such as suppressor of cytokine signaling 1 (SOCS1), Src homology-2-domain-containing inositol 5-phosphatase 1 (SHIP1), C/EBP- and IL13R 1. Therefore, miR-155 contributes to induction of neural inflammation. MiR-155 causes inflammation of microglia by a secondary route.  

Conclusion: Studying the expression of the specified micro-RNA reveals new opportunities for its use as a biomarker for inflammation, means for monitoring the effectiveness of the therapeutic process and maybe in the near future – will serve as a target for the development of contemporary individual anti-inflammatory therapy for a number of diseases.


Keywords

miRNA-155, inflammation, expression, infectious diseases

Full Text


References

Alexandrov, P.N.; Dua, P.; Lukiw, W.J. Up-Regulation of MiRNA-146a in Progressive, Age-Related Inflammatory Neurodegenerative Disorders of the Human CNS. Front. Neurol. 2014, 5.

Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R,Pasquinelli AE. 2005. Regulation by let-7 and lin-4 miRNAsresults in target mRNA degradation. Cell 122(4):553–563

Bala, S.; Marcos, M.; Kodys, K.; Csak, T.; Catalano, D.; Mandrekar, P.; Szabo, G. Up-Regulation of MicroRNA-155 in Macrophages Contributes to Increased Tumor Necrosis Factor

(TNF) Production via Increased MRNA Half-Life in Alcoholic Liver Disease. J. Biol. Chem. 2011, 286, 1436–1444

Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mecha-nism, and function. Cell 116(2):281–297

Bhela, S.; Reddy, P.B.J.; Richardson, R.L.; Rajasagi, N.K.; Osmand, A.P.; Rouse, B.T.; Veiga-Parga, T.; Gimenez, F.; Mulik, S. Critical Role of MicroRNA-155 in Herpes Simplex Encephalitis. J. Immunol. 2014, 192, 2734–2743

Bhela, S.; Mulik, S.; Gimenez, F.; Reddy, P.B.J.; Richardson, R.L.; Varanasi, S.K.; Jaggi, U.; Xu, J.; Lu, P.Y.; Rouse, B.T. Role of MiR-155 in the Pathogenesis of Herpetic Stromal Keratitis. Am. J. Pathol. 2015, 185, 1073–1084

Blenkiron C, Miska EA. 2007. miRNAs in cancer: approaches, aetiology, diagnostics and therapy. Hum Mol Genet 16 Spec No 1:R106–R113

Bradshaw, M.J.; Venkatesan, A. Herpes Simplex Virus-1 Encephalitis in Adults: Pathophysiology, Diagnosis, and Management. Neurotherapeutics 2016, 13, 493–508

Bruning U, Cerone L, Neufeld Z, Fitzpatrick SF, Cheong A,Scholz CC, Simpson DA, Leonard MO, Tambuwala MM,Cummins EP, Taylor CT. 2011. MicroRNA-155 promotesresolution of hypoxia-inducible factor 1alpha activity duringprolonged hypoxia. Mol Cell Biol 31(19):4087–4096

Cardoso, A.L.; Guedes, J.R.; Pereira de Almeida, L.; Pedroso de Lima, M.C. MiR-155 Modulates Microglia-Mediated Immune Response by down-Regulating SOCS-1 and Promoting Cytokine and Nitric Oxide Production. Immunology 2012, 135, 73–88

Chendrimada, T.P.; Gregory, R.I.; Kumaraswamy, E.; Norman, J.; Cooch, N.; Nishikura, K.; Shiekhattar, R.TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing.Nature2005,436,740–744

Clie, A.R.; Wilson, A.C. Restarting Lytic Gene Transcription at the Onset of Herpes Simplex Virus Reactivation. J. Virol. 2017, 91, 1–6

Croce CM. 2009. Causes and consequences of microRNAdysregulation in cancer. Nat Rev Genet 10(10):704–714

Cui, J.G.; Li, Y.Y.; Zhao, Y.; Bhattacharjee, S.; Lukiw, W.J. Di erential Regulation of Interleukin-1 Receptor-Associated Kinase-1 (IRAK-1) and IRAK-2 by MicroRNA-146a and NF-KB in Stressed Human Astroglial Cells and in Alzheimer Disease. J. Biol. Chem. 2010, 285, 38951–38960

Dai Y, Huang YS, Tang M, et al. Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus. 2007;16:939-946

Dai Y, Sui W, Lan H, Yan Q, Huang H, Huang Y. Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients. Rheumatol Int. 2009;29:749-754

Delay, C.; Calon, F.; Mathews, P.; Hébert, S.S. Alzheimer-Specific Variants in the 30UTR of Amyloid Precursor Protein A ect MicroRNA Function. Mol. Neurodegener. 2011, 6, 70

Denli, A.M.; Tops, B.B.; Plasterk, R.H.; Ketting, R.F.; Hannon, G.J. Processing of primary microRNAs by the Microprocessor complex.Nature 2004,432, 231–235

Diederichs, S.; Haber, D.A. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression.Cell 2007,131, 1097–1108

Esteller M. 2011. Non-coding RNAs in human disease. Nat RevGenet 12(12):861–874

Fasseu, M.; Treton, X.; Guichard, C.; Pedruzzi, E.; Cazals-Hatem, D.; Richard, C.; Aparicio, T.; Daniel, F.;Soule, J.C.; Moreau, R.;et al.Identification of restricted subsets of mature microRNA abnormally expressed ininactive colonic mucosa of patients with inflammatory bowel disease.PLoS ONE2010,5, e13160

Goedeke, L.; Fernández-Hernando, C. MicroRNAs: A Connection between Cholesterol Metabolism and Neurodegeneration. Neurobiol. Dis. 2014, 72, 48–53

Goldmann, T.; Prinz, M. Role of Microglia in CNS Autoimmunity. Clin. Dev. Immunol. 2013, 2013, 1–8

Guedes, J.R.; Custódia, C.M.; Silva, R.J.; de Almeida, L.P.; de Lima, M.C.P.; Cardoso, A.L. Early MiR-155 Upregulation Contributes to Neuroinflammation in Alzheimer’s Disease Triple Transgenic Mouse Model. Hum. Mol. Genet. 2014, 23, 6286–6301

Gutierrez MJ, Gomez JL, Perez GF, Pancham K, Val S, Pillai DK, et al. Airway Secretory microRNAome Changes during Rhinovirus Infection in Early Childhood. PLoS One. 2016 Sep 19; 11(9):e0162244. https://doi.org/10.1371/journal.pone.0162244

John B, Sander C, Marks DS. 2006. Prediction of human mi-croRNA targets. Methods Mol Biol 342:101–113

Jovanovic M, Hengartner MO. 2006. miRNAs and apoptosis: RNAs to die for. Oncogene 25(46):6176–6187

Junker, A.; Krumbholz, M.; Eisele, S.; Mohan, H.; Augstein, F.; Bittner, R.; Lassmann, H.; Wekerle, H.; Hohlfeld, R.; Meinl, E. MicroRNA Profiling of Multiple Sclerosis Lesions Identifies Modulators of the Regulatory Protein CD47. Brain 2009, 132, 3342–3352

Inchley CS, Sonerud T, Fjærli HO, Nakstad B. Nasal mucosal microRNA expression in children with respiratory syncytial virus infection. BMC Infect Dis. 2015 Mar 25; 15:150. https://doi.org/10.1186/s12879-015-0878-z

Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM. 2005. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070

Kim VN. 2005. MicroRNA biogenesis: coordinated croppingand dicing. Nat Rev Mol Cell Biol 6(5):376–385

Kim VN, Han J, Siomi MC. 2009. Biogenesis of small RNAs inanimals. Nat Rev Mol Cell Biol 10(2):126–139

Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS,Cheng JQ. 2008. MicroRNA-155 is regulated by the trans-forming growth factor beta/Smad pathway and contributes toepithelial cell plasticity by targeting RhoA. Mol Cell Biol28(22):6773–6784

Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ,MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M,Rajewsky N. 2005. Combinatorial microRNA target predic-tions. Nat Genet 37(5):495–500

Kurowska-Stolarska M, Hasoo MK, Welsh DJ, Stewart L,McIntyre D, Morton BE, Johnstone S, Miller AM, AsquithDL, Millar NL, Millar AB, Feghali-Bostwick CA, Hirani N,Crick PJ, Wang Y, Griffiths WJ, McInnes IB, McSharry C.2017. The role of microRNA-155/liver X receptor pathway inexperimental and idiopathic pulmonary fibrosis. J AllergyClin Immunol 139(6):1946–1956

Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s Disease. Eur. J. Neurol. 2018, 25, 59–70

Lees, A.J.; Hardy, J.; Revesz, T. Parkinson’s Disease. Lancet 2009, 373, 2055–2066

Li, Y.Y.; Cui, J.G.; Dua, P.; Pogue, A.I.; Bhattacharjee, S.; Lukiw, W.J. Differential Expression of MiRNA-146a-Regulated Inflammatory Genes in Human Primary Neural, Astroglial and Microglial Cells. Neurosci. Lett. 2011, 499, 109–113

Lin PY, Yu SL, Yang PC. 2010. MicroRNA in lung cancer. Br JCancer 103(8):1144–1148

Majer, A.; Caligiuri, K.A.; Gale, K.K.; Niu, Y.; Phillipson, C.S.; Booth, T.F.; Booth, S.A. Induction of Multiple MiR-200/182 Members in the Brains of Mice Are Associated with Acute Herpes Simplex Virus 1 Encephalitis. PLoS ONE 2017, 12, e0169081

Mann M, Mehta A, Zhao JL, Lee K, Marinov GK, Garcia-Flores Y, Baltimore D. 2017. An NF-kappaB-microRNAregulatory network tunes macrophage inflammatory re-sponses. Nat Commun 8(1):851

Martinez-Nunez, R.T.; Louafi, F.; Sanchez-Elsner, T. The Interleukin 13 (IL-13) Pathway in Human Macrophages Is Modulated by MicroRNA-155 via Direct Targeting of Interleukin 13 Receptor A1 (IL13R 1). J. Biol. Chem. 2011, 286, 1786–1794

Mashima R. 2015. Physiological roles of miR-155. Im-munology 145(3):323–333

Moschos, S.A.; Williams, A.E.; Perry, M.M.; Birrell, M.A.; Belvisi, M.G.; Lindsay, M.A. Expressionprofilingin vivodemonstrates rapid changes in lung microRNA levels following lipopolysaccharide-inducedinflammation but not in the anti-inflammatory action of glucocorticoids.BMC Genom.2007,8.; Kaser, A.; Zeissig, S.; Blumberg, R.S. Inflammatory bowel disease.Annu. Rev. Immunol.2010,28, 573–621

Nakasa T, Miyaki S, Okubo A, et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 2008;58:1284-1292

O’Connell, R.M.; Taganov, K.D.; Boldin, M.P.; Cheng, G.; Baltimore, D. MicroRNA-155 is induced during themacrophage inflammatory response.Proc. Natl. Acad. Sci. USA2007,104, 1604–1609

O’Connell, R.M.; Chaudhuri, A.A.; Rao, D.S.; Baltimore, D. Inositol Phosphatase SHIP1 Is a Primary Target of MiR-155. Proc. Natl. Acad. Sci. USA 2009, 106, 7113–7118

Palazzo AF, Lee ES. 2015. Non-coding RNA: what is functional and what is junk? Front Genet 6:2

Park, R.; Lee, W.J.; Ji, J.D. Association between the Three Functional MiR-146a Single-Nucleotide Polymorphisms, Rs2910164, Rs57095329, and Rs2431697, and Autoimmune Disease Susceptibility: A Meta-Analysis. Autoimmunity 2016, 49, 451–458

Ponomarev, E.D.; Veremeyko, T.; Barteneva, N.; Krichevsky, A.M.;Weiner, H.L. MicroRNA-124 Promotes Microglia Quiescence and Suppresses EAE by Deactivating Macrophages via the C/EBP-PU.1 Pathway. Nat. Med. 2011, 17, 64–70

Pottier N, Maurin T, Chevalier B, Puissegur MP, Lebrigand K,Robbe-Sermesant K, Bertero T, Lino Cardenas CL, CourcotE, Rios G, Fourre S, Lo-Guidice JM, Marcet B, Cardinaud B,Barbry P, Mari B. 2009. Identification of keratinocyte growthfactor as a target of microRNA-155 in lung fibroblasts: im-plication in epithelial-mesenchymal interactions. PLoS One4(8):e6718

Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M. 2004. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432(7014):226–230

Poy MN, Spranger M, Stoffel M. 2007. microRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes Metab 9 Suppl 2:67–73

Rana, T.M. Illuminating the silence: Understanding the structure and function of small RNAs.Nat. Rev. Mol.Cell Biol.2007,8, 23–36

Rechenchoski, D.Z.; Faccin-Galhardi, L.C.; Linhares, R.E.C.; Nozawa, C. Herpesvirus: An Underestimated Virus. Folia Microbiol. 2017, 62, 151–156

Saxne, T., Lindell, M., Mansson, B., Petersson, I., Heinegard, D., 2003. Inflammation is a feature of the disease process in early knee joint osteoarthritis. Rheumatology 42, 903–905

Sharma, L.; K., Dipali; I., Sakeba Epidemiology of osteoarthritis: an update, Current Opinion in Rheumatology: March 2006 - Volume 18 - Issue 2 - p 147-156 doi: 10.1097/01.bor.0000209426.84775.f8

Sheedy FJ, O’Neill LAJAdding fuel to fire: microRNAs as a new class of mediators of inflammationAnnals of the Rheumatic Diseases 2008;67:iii50-iii55

Sokolove, J., Lepus, C.M., 2013. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. In: Therapeutic Advances in Musculoskeletal Disease. 5. pp. 77–94

Sonkoly E, Wei T, Janson PC, et al. MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One. 2007;2:e610

Stanczyk J, Pedrioli DM, Brentano F, et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 2008;58:1001-1009

Taganov, K.D.; Boldin, M.P.; Chang, K.-J.; Baltimore, D. NF-B-Dependent Induction of MicroRNA MiR-146, an Inhibitor Targeted to Signaling Proteins of Innate Immune Responses. Proc. Natl. Acad. Sci. USA 2006, 103, 12481–12486

Takagi, T.; Naito, Y.; Mizushima, K.; Hirata, I.; Yagi, N.; Tomatsuri, N.; Ando, T.; Oyamada, Y.; Isozaki, Y.;Hongo, H.;et al.Increased expression of microRNA in the inflamed colonic mucosa of patients withactiveulcerative colitis.J. Gastroenterol. Hepatol.2010,25, S129–S133

Tam W. 2001. Identification and characterization of humanBIC, a gene on chromosome 21 that encodes a noncodingRNA. Gene 274(1–2):157–167

Tan Z, Randall G, Fan J, et al. Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet. 2007;81:829-834

Tarassishin L, Loudig O, Bauman A, Shafit-Zagardo B, Suh HS,Lee SC. 2011. Interferon regulatory factor 3 inhibits astrocyteinflammatory gene expression through suppression of theproinflammatory miR-155 and miR-155*. Glia 59(12):1911–1922

Thai, T.H.; Calado, D.P.; Casola, S.; Ansel, K.M.; Xiao, C.; Xue, Y.; Murphy, A.; Frendewey, D.; Valenzuela, D.;Kutok, J.L.;et al.Regulation of the germinal center response by microRNA-155.Science2007,316, 604–608

Thome, A.D.; Harms, A.S.; Volpicelli-Daley, L.A.; Standaert, D.G. MicroRNA-155 Regulates Alpha-Synuclein-Induced Inflammatory Responses in Models of Parkinson Disease. J. Neurosci. 2016, 36, 2383–2390

Valeri N, Gasparini P, Fabbri M, Braconi C, Veronese A, LovatF, Adair B, Vannini I, Fanini F, Bottoni A, Costinean S,Sandhu SK, Nuovo GJ, Alder H, Gafa R, Calore F, FerracinM, Lanza G, Volinia S, Negrini M, McIlhatton MA, AmadoriD, Fishel R, Croce CM. 2010. Modulation of mismatch repairand genomic stability by miR-155. Proc Natl Acad Sci U S A107(15):6982–6987

van Rooij E, Olson EN. 2007. MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest 117(9):2369–2376

Vidal-Jordana, A.; Montalban, X. Multiple Sclerosis: Epidemiologic, Clinical, and Therapeutic Aspects. Neuroimaging Clin. N. Am. 2017, 27, 195–204

Wan J. , Xia L., Xu W. and Lu N. Expression and Function of miR-155 in Diseases ofthe Gastrointestinal Tract. Int. J. Mol. Sci.2016,17, 709; doi:10.3390/ijms1705070

Wang, P.; Hou, J.; Lin, L.; Wang, C.; Liu, X.; Li, D.; Ma, F.; Wang, Z.; Cao, X. Inducible MicroRNA-155 Feedback Promotes Type I IFN Signaling in Antiviral Innate Immunity by Targeting Suppressor of Cytokine Signaling 1. J. Immunol. 2010, 185, 6226–6233

Worm, J.; Stenvang, J.; Petri, A.; Frederiksen, K.S.; Obad, S.; Elmén, J.; Hedtjärn, M.; Straarup, E.M.; Hansen, J.B.; Kauppinen, S. Silencing of MicroRNA-155 in Mice during Acute Inflammatory Response Leads to Derepression of c/Ebp Beta and down-Regulation of G-CSF. Nucleic Acids Res. 2009, 37, 5784–5792

Wu, F.; Zhang, S.; Dassopoulos, T.; Harris, M.L.; Bayless, T.M.; Meltzer, S.J.; Brant, S.R.; Kwon, J.H.Identification of microRNAs associated with ileal and colonic Crohn’s disease.Inflamm. Bowel Dis.2010,16,1729–1738

Wu, D.; Cerutti, C.; Lopez-Ramirez, M.A.; Pryce, G.; King-Robson, J.; Simpson, J.E.; Van Der Pol, S.M.A.; Hirst, M.C.; De Vries, H.E.; Sharrack, B.; et al. Brain Endothelial MiR-146a Negatively Modulates T-Cell Adhesion through Repressing Multiple Targets to Inhibit NF-KB Activation. J. Cereb. Blood Flow Metab. 2015, 35, 412–423

Yoshimura, A.; Naka, T.; Kubo, M. SOCS proteins, cytokine signaling and immune regulation. Nature Reviews Immunology2007, 7, 454-465

Zhou H, Huang X, Cui H, Luo X, Tang Y, Chen S, Wu L, ShenN. 2010. miR-155 and its star-form partner miR-155* co-operatively regulate type I interferon production by humanplasmacytoid dendritic cells. Blood 116(26):5885–5894

Zhou, Y.; Chen, M.; Simpson, S.; Lucas, R.M.; Charlesworth, J.C.; Blackburn, N.; van der Mei, I.; Ponsonby, A.-L.; Taylor, B.V. Common Genetic Variation within MiR-146a Predicts Disease Onset and Relapse in Multiple Sclerosis. Neurol. Sci. 2018, 39, 297–304


Refbacks

Font Size