Introduction: Malaria, caused by Plasmodium spp., remains a global health challenge despite significant reductions in incidence and mortality over recent decades. Factors such as drug and insecticide resistance, diagnostic limitations, and the expansion of Anopheles vectors into new regions hinders control efforts. Artificial intelligence (AI) offers innovative tools to address these challenges by processing complex data, improving diagnostics, and supporting prevention strategies.
Aim: This review explores the implementation of AI-based technologies in malaria control, focusing on their roles in epidemiological surveillance, diagnosis, treatment, vector control, and vaccine development.
Materials and Methods: A comprehensive literature review was conducted for studies published between 2020 and 2024. Keywords included “malaria,” “Plasmodium,” and “artificial intelligence,” “AI.” The results were reviewed, emphasizing observational research on AI applications in epidemiological modeling of malaria transmission, enhancing vector control, improving diagnostic methods and protocols, and advancing the development of new vaccines and treatments.
Results and Discussion: AI technologies demonstrate а transformative potential in malaria control. AI-driven models can predict outbreaks by analyzing climatic, environmental, and medical data; they can improve the accuracy of rapid diagnostic tests and automate the analysis of blood smears for parasite detection, enhancing diagnostic reliability. In addition, they can accelerate drug discovery by identifying novel therapeutic targets, identify antigenic candidates, and predict immune responses assisting vaccine research. AI-integrated citizen science initiatives, supported by smartphone apps, enhances vector surveillance, while satellite imagery processed through machine learning predicts vector breeding sites.
Conclusion: AI-based tools represent a promising frontier in malaria management, offering innovative solutions for surveillance, diagnostics, treatment, and prevention. With continued research and refinement, these modern-day technologies could significantly contribute to the eradication of malaria.
World Health Organization. World malaria report 2023. Geneva: World Health Organization; 2023. ISBN 978-92-4-008618-0.
Varo R, Chaccour C, Bassat Q. Update on malaria. Med Clin (Barc). 2020;155(9):395-402. doi:10.1016/j.medcli.2020.05.010.
Holzinger A, Langs G, Denk H, Zatloukal K, Müller H. Causability and explainability of artificial intelligence in medicine. WIREs Data Mining Knowl Discov. 2019;9(4):e1312. doi:10.1002/widm.1312.
Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med. 2022;28(1):31-8. doi:10.1038/s41591-021-01614-0.
Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine. Gastrointest Endosc. 2020;92(4):807-812. doi:10.1016/j.gie.2020.06.040.
Rothman KJ, Huybrechts KF, Murray EJ. Epidemiology: an introduction. Oxford: Oxford University Press; 2024 Oct 11.
Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and potential. Health Inf Sci Syst. 2014;2:3. doi:10.1186/2047-2501-2-3.
Komugabe MA, Caballero R, Shabtai I, Musinguzi SP. Advancing malaria prediction in Uganda through AI and geospatial analysis models. J Geogr Inf Syst. 2024;16(2):115–35. doi:10.4236/jgis.2024.162008.
Kabaria C, Molteni F, Mandike R, Chacky F, Noor AM, Snow RW, Linard C. Mapping intra-urban malaria risk using high-resolution satellite imagery: a case study of Dar es Salaam. Int J Health Geogr. 2016;15(1):26. doi:10.1186/s12942-016-0051-y.
Parselia E, Kontoes C, Tsouni A, Hadjichristodoulou C, Kioutsioukis I, Magiorkinis G, et al. Satellite Earth observation data in epidemiological modeling of malaria, dengue and West Nile virus: a scoping review. Remote Sens. 2019;11(16):1862. doi:10.3390/rs11161862.
Harvey D, Valkenburg W, Amara A. Predicting malaria epidemics in Burkina Faso with machine learning. PLoS One. 2021 Jun 18;16(6):e0253302. doi: 10.1371/journal.pone.0253302.
Phoobane P, Masinde M, Botai J. Prediction Model for Malaria: An Ensemble of Machine Learning and Hydrological Drought Indices. InProceedings of Sixth International Congress on Information and Communication Technology: ICICT 2021, London. Vol. 3. Springer Singapore; 2022. pp. 569-84.
Asadgol Z, Badirzadeh A, Mirahmadi H, Safari H, Mohammadi H, Gholami M. Simulation of the potential impact of climate change on malaria incidence using artificial neural networks (ANNs). Environ Sci Pollut Res Int. 2023 Jun;30(30):75349-68. doi: 10.1007/s11356-023-27374-7.
Nisar KS, Anjum MW, Raja MAZ, Shoaib M. Design of a novel intelligent computing framework for predictive solutions of malaria propagation model. PLoS One. 2024 Apr 18;19(4):e0298451. doi: 10.1371/journal.pone.0298451.
Hod R, Mokhtar SA, Muharam FM, Shamsudin UK, Hisham Hashim J. Developing a Predictive Model for Plasmodium knowlesi-Susceptible Areas in Malaysia Using Geospatial Data and Artificial Neural Networks. Asia Pac J Public Health. 2022 Mar;34(2-3):182-90. doi: 10.1177/10105395211048620.
Reisman M. EHRs: The Challenge of Making Electronic Data Usable and Interoperable. P T. 2017 Sep;42(9):572-5.
Lauritsen SM, Kristensen M, Olsen M, Larsen MS, Lauritsen KM, Jørgensen MJ, et al. Explainable artificial intelligence model to predict acute critical illness from electronic health records. Nat Commun. 2020;11(1):3852. doi:10.1038/s41467-020-17431-x.
Bria YP, Yeh CH, Bedingfield S. Machine Learning Classifiers for Symptom-Based Malaria Prediction. 2022 International Joint Conference on Neural Networks (IJCNN). 2022 Jul 18; pp. 1-6, doi: 10.1109/IJCNN55064.2022.9891945.
Morang 'a CM, Amenga-Etego L, Bah SY, Appiah V, Amuzu DSY, Amoako N, et al. Machine learning approaches classify clinical malaria outcomes based on haematological parameters. BMC Med. 2020 Nov 30;18(1):375. doi: 10.1186/s12916-020-01823-3.
Nsugbe E, Mathebula D, Viza E, Samuel OW, Connelly S, Mutanga I. On the Clinical Use of Artificial Intelligence and Haematological Measurements for a Rapid Diagnosis and Care of Paediatric Malaria Patients in West Africa. Engineering Proceedings. 2023;58(1):131. doi: 10.3390/ecsa-10-16246.
Zhao AP, Li S, Cao Z, Hu PJH, Wang J, Xiang Y, et al. AI for Science: Predicting Infectious Diseases. Journal of safety science and resilience. 2024 Mar 1;5(2). doi: 10.1016/j.jnlssr.2024.02.002.
Murindahabi MM, Hoseni A, Vreugdenhil CV, van Vliet AJ, Umupfasoni J, Mutabazi A, et al. Citizen science for monitoring the spatial and temporal dynamics of malaria vectors in relation to environmental risk factors in Ruhuha, Rwanda. Malar J. 2021;20(1):453. doi:10.1186/s12936-021-03989-4.
Carney RM, Mapes C, Low RD, Long A, Bowser A, Durieux D, et al. Integrating global citizen science platforms to enable next-generation surveillance of invasive and vector mosquitoes. Insects. 2022;13(8):675. doi:10.3390/insects13080675.
Južnič-Zonta Ž, Sanpera-Calbet I, Eritja R, Palmer JRB, Escobar A, Garriga J, et al. Mosquito Alert Digital Entomology Network. Mosquito alert: leveraging citizen science to create a GBIF mosquito occurrence dataset. Gigabyte. 2022;2022:54. doi:10.46471/gigabyte.54.
Uelmen JA Jr, Clark A, Palmer J, Kohler J, Van Dyke LC, Low R, et al. Global mosquito observations dashboard (GMOD): creating a user-friendly web interface fueled by citizen science to monitor invasive and vector mosquitoes. Int J Health Geogr. 2023 Oct 28;22(1):28. doi: 10.1186/s12942-023-00350-7.
Carney RM, Long A, Low RD, Zohdy S, Palmer JRB, Elias P, et al. Citizen Science as an Approach for Responding to the Threat of Anopheles stephensi in Africa. Citiz Sci. 2023;8(1):10.5334/cstp.616. doi: 10.5334/cstp.616.
Gupta K, Ruan Y, Ibrahim A, Mendonca R, Cooper S, Morris S, Hattery D. Transforming Rapid Diagnostic Tests into Trusted Diagnostic Tools in LMIC using AI, 2023 IEEE Conference on Artificial Intelligence (CAI), Santa Clara, CA, USA, 2023: 306-308, doi: 10.1109/CAI54212.2023.00136.28.
Raihan MJ, Nahid AA. Malaria cell image classification by explainable artificial intelligence. Health and Technology. 2022 Jan;12(1):47-58. doi: 10.1007/s12553-021-00620-z.
Nayak SR, Nayak J, Vimal S, Arora V, Sinha U. An ensemble artificial intelligence‐enabled MIoT for automated diagnosis of malaria parasite. Expert Systems. 2022 May;39(4):e12906.
Katharina P, István K, János T. An automated neural network-based stage-specific malaria detection software using dimension reduction: The malaria microscopy classifier. MethodsX. 2023 Apr 20;10:102189. doi: 10.1016/j.mex.2023.102189.
Muralidhar R, Demory ML, Kesselman MM. Exploring the Impact of Batch Size on Deep Learning Artificial Intelligence Models for Malaria Detection. Cureus. 2024 May 13;16(5):e60224. doi: 10.7759/cureus.60224.
Liu R, Liu T, Dan T, Yang S, Li Y, Luo B, et al. AIDMAN: An AI-based object detection system for malaria diagnosis from smartphone thin-blood-smear images. Patterns (N Y). 2023 Aug 3;4(9):100806. doi: 10.1016/j.patter.2023.100806.
Yu H, Yang F, Rajaraman S, Ersoy I, Moallem G, Poostchi M, et al. Malaria Screener: a smartphone application for automated malaria screening. BMC Infect Dis. 2020 Nov 11;20(1):825. doi: 10.1186/s12879-020-05453-1.
MalariaGEN; Ahouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Amaratunga C, et al. An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome Open Res. 2021;6:42. doi:10.12688/wellcomeopenres.16168.2.
MalariaGEN: The Malaria Genomic Epidemiology Network [Internet]. Available from: https://www.malariagen.net/
Deelder W, Manko E, Phelan JE, Campino S, Palla L, Clark TG. Geographical classification of malaria parasites through applying machine learning to whole genome sequence data. Sci Rep. 2022 Dec 7;12(1):21150. doi: 10.1038/s41598-022-25568-6.
Laurens MB. Novel malaria vaccines. Hum Vaccin Immunother. 2021;17(11):4549-52. doi:10.1080/21645515.2021.1947762.
Malik S, Waheed Y. Recent advances on vaccines against malaria: a review. Asian Pac J Trop Med. 2024;17(4):143-59. doi:10.4103/apjtm.apjtm_678_23.
Russo G, Reche P, Pennisi M, Pappalardo F. The combination of artificial intelligence and systems biology for intelligent vaccine design. Expert Opin Drug Discov. 2020;15(11):1267-82. doi:10.1080/17460441.2020.1791076..
Ncube NB, Tukulula M, Govender KG. Leveraging computational tools to combat malaria: assessment and development of new therapeutics. J Cheminform. 2024;16(1):50. doi:10.1186/s13321-024-00842-z.
Keshavarzi Arshadi A, Salem M, Collins J, Yuan JS, Chakrabarti D. DeepMalaria: Artificial Intelligence Driven Discovery of Potent Antiplasmodials. Front Pharmacol. 2020 Jan 15;10:1526. doi: 10.3389/fphar.2019.01526.
Lima MNN, Borba JVB, Cassiano GC, Mottin M, Mendonça SS, Silva AC, et al. Artificial Intelligence Applied to the Rapid Identification of New Antimalarial Candidates with Dual-Stage Activity. ChemMedChem. 2021 Apr 8;16(7):1093-103. doi: 10.1002/cmdc.202000685.
Turon G, Hlozek J, Woodland JG, Kumar A, Chibale K, Duran-Frigola M. First fully-automated AI/ML virtual screening cascade implemented at a drug discovery centre in Africa. Nat Commun. 2023 Sep 15;14(1):5736. doi: 10.1038/s41467-023-41512-2.
Krishnan G, Singh S, Pathania M, Gosavi S, Abhishek S, Parchani A, et al. Artificial intelligence in clinical medicine: catalyzing a sustainable global healthcare paradigm. Front Artif Intell. 2023;6:1227091. doi:10.3389/frai.2023.1227091.
Kiener M. Artificial intelligence in medicine and the disclosure of risks. AI Soc. 2021;36(3):705-13. doi:10.1007/s00146-020-01085-w.