Scientific Online Resource System

Scripta Scientifica Medicinae Dentalis

Factors Affecting Bone Temperature Increase During Implant Surgery - Review

Elitsa Sabeva

Abstract

Introduction

During implant surgery certain amount of heat is produced. It is known that temperature increase above the critical threshold of 47°C for a minute could lead to thermal osteonecrosis, which could be the reason for an early implant failure.

Aim

The aim of this review was to reveal the multifactorial nature of bone temperature rise during dental implant surgery.

Materials and Methods

PubMed and Google Scholar databases were searched to select articles related to the topic. The review includes articles published from 1972 to 2019, only in English language. 

Results

All reviewed original articles, describing studies, whose aim was to observe the heat generation during implant surgery, are experimental. A few reviews were included. As potential risk factors for thermal damage of the bone were considered the site preparation protocol, drill wear, drill design, drilling speed and cooling effectiveness.

Conclusion

Heat generation during implant site preparation could be increased by performing guided implant or piezoelectric surgery. The use of combined irrigation at higher speeds, sharper drills and laser-assisted osteotomy could help avoid the risk of thermal damage to the bone. The heat production during the implant site preparation is a subject to many studies, but there is still a lack of data about the temperature rise during implant insertion.


Keywords

heat generation, implant site preparation, temperature

Full Text


References

Eriksson AR, Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent. 1983;50(1):101-7. doi: 10.1016/0022-3913(83)90174-9.

Möhlhenrich SC, Modabber A, Steiner T, Mitchell DA, Hölzle F. Heat generation and drill wear during dental implant site preparation: systematic review. Br J Oral Maxillofac Surg. 2015;53(8):679-89. doi: 10.1016/j.bjoms.2015.05.004.

Bulloch SE, Olsen RG, Bulloch B. Comparison of heat generation between internally guided (cannulated) single drill and traditional sequential drilling with and without a drill guide for dental implants. Int J Oral Maxillofac Implants. 2012;27(6):1456-60.

Liu YF, Wu JL, Zhang JX, Peng W, Liao WQ. Numerical and experimental analyses on the temperature distribution in the dental implant preparation area when using a surgical guide. J Prosthodont. 2018;27(1):42-51. doi: 10.1111/jopr.12488.

Boa K, Barrak I, Varga E Jr, Joob-Fancsaly A, Varga E, Piffko J. Intraosseous generation of heat during guided surgical drilling: an ex vivo study of the effect of the temperature of the irrigating fluid. Br J Oral Maxillofac Surg. 2016; 54(8):904-8. doi:10.1016/j.bjoms.2016.06.004.

Gehrke SA, Aramburú Júnior JS, Pérez-Albacete Martínez C, Ramirez Fernandez MP, Maté Sánchez de Val JE, Calvo-Guirado JL. The influence of drill length and irrigation system on heat production during osteotomy preparation for dental implants: an ex vivo study. Clin Oral Implants Res. 2018;29(7):772-8. doi: 10.1111/clr.12827.

Oh HJ, Wikesjö UM, Kang HS, Ku Y, Eom TG, Koo KT. Effect of implant drill characteristics on heat generation in osteotomy sites: a pilot study. Clin Oral Implants Res. 2011;22(7):722-6. doi: 10.1111/j.1600-0501.2010.02051.x.

Oh JH, Fang Y, Jeong SM, Choi BH. The effect of low-speed drilling without irrigation on heat generation: an experimental study. J Korean Assoc Oral Maxillofac Surg. 2016;42(1):9-12. doi: 10.5125/jkaoms.2016.42.1.9.

Mishra SK, Chowdhary R. Heat generated by dental implant drills during osteotomy-a review: heat generated by dental implant drills. J Indian Prosthodont Soc. 2014;14(2):131-43. doi: 10.1007/s13191-014-0350-6.

Möhlhenrich SC, Abouridouane M, Heussen N, Hölzle F, Klocke F, Modabber A. Thermal evaluation by infrared measurement of implant site preparation between single and gradual drilling in artificial bone blocks of different densities. Int J Oral Maxillofac Surg. 2016; 45(11):1478-84. doi: 10.1016/j.ijom.2016.05.020.

Möhlhenrich SC, Abouridouane M, Heussen N, Modabber A, Klocke F, Hölzle F. Influence of bone density and implant drill diameter on the resulting axial force and temperature development in implant burs and artificial bone: an in vitro study. Oral Maxillofac Surg. 2016;20(2):135-42. doi: 10.1007/s10006-015-0536-z.

Harder S, Egert C, Freitag-Wolf S, Mehl C, Kern M. Intraosseous temperature changes during implant site preparation: in vitro comparison of thermocouples and infrared thermography. Int J Oral Maxillofac Implants. 2018;33(1):72-8. doi: 10.11607/jomi.6222.

Chauhan CJ, Shah DN, Sutaria FB. Various bio-mechanical factors affecting heat generation during osteotomy preparation: A systematic review. Indian J Dent Res. 2018;29(1):81-92. doi: 10.4103/ijdr.IJDR_729_16.

Frösch L, Mukaddam K, Filippi A, Zitzmann NU, Kühl S. Comparison of heat generation between guided and conventional implant surgery for single and sequential drilling protocols - an in vitro study. Clin Oral Implants Res. 2019;30(2):121-130. doi: 10.1111/clr.13398.

Barrak I, Joób-Fancsaly Ã, Braunitzer G, Varga E Jr, Boa K, Piffkó J. Intraosseous heat generation during osteotomy performed freehand and through template with an integrated metal guide sleeve: an in vitro study. Implant Dent. 2018;27(3):342-50. doi: 10.1097/ID.0000000000000763.

Barrak I, Joób-Fancsaly A, Varga E, Boa K, Piffko J. Effect of the combination of low-speed drilling and cooled irrigation fluid on intraosseous heat generation during guided surgical implant site preparation: an in vitro study. Implant Dent. 2017

Barrak I, Boa K, Joób-Fancsaly Ã, Varga E, Sculean A, Piffkó J. Heat Generation During Guided and Freehand Implant Site Preparation at Drilling Speeds of 1500 and 2000 RPM at Different Irrigation Temperatures: An In Vitro Study. Oral Health Prev Dent. 2019;1-8. doi: 10.3290/j.ohpd.a42507.

Misir AF, Sumer M, Yenisey M, Ergioglu E. Effect of surgical drill guide on heat generated from implant drilling. J Oral Maxillofac Surg. 2009;67(12):2663-8. doi: 10.1016/j.joms.2009.07.056.

El-Kholey KE, Ramasamy S, Kumar RS, Elkomy A. Effect of simplifying drilling technique on heat generation during osteotomy preparation for dental implant. Implant Dent. 2017;26(6):888-91. doi: 10.1097/ID.0000000000000692.

Mihali SG, Canjau S, Cernescu A, Bortun CM, Wang HL, Bratu E. Effects of a short drilling implant protocol on osteotomy site temperature and drill torque. Implant Dent. 2018;27(1):63-8. doi: 10.1097/ID.0000000000000707.

Delgado-Ruiz RA, Velasco Ortega E, Romanos GE, Gerhke S, Newen I, Calvo-Guirado JL. Slow drilling speeds for single-drill implant bed preparation. Experimental in vitro study. Clin Oral Investig. 2018;22(1):349-359. doi: 10.1007/s00784-017-2119-x.

Scarano A, Iezzi G, Perrotti V, Tetè S, Staiti G, Mortellaro C, et al. Ultrasonic versus drills implant site preparation: a histologic analysis in bovine ribs. J Craniofac Surg. 2014;25(3):814-7. doi: 10.1097/SCS.0000000000000713.

Scarano A, Carinci F, Lorusso F, Festa F, Bevilacqua L, Santos de oliveira p, et al. Ultrasonic vs drill implant site preparation: post-operative pain measurement through VAS, swelling and crestal bone remodeling: a randomized clinical study. Materials (Basel). 2018;11(12). pii: E2516. doi: 10.3390/ma11122516.

Rashad A, Kaiser A, Prochnow N, Schmitz I, Hoffmann E, Maurer P. Heat production during different ultrasonic and conventional osteotomy preparations for dental implants. Clin Oral Implants Res. 2011;22(12):1361-5. doi:10.1111/j.1600-0501.2010.02126.x.

Lajolo C, Valente NA, Romandini WG, Petruzzi M, Verdugo F, D'Addona A. Bone heat generated using conventional implant drills versus piezosurgery unit during apical cortical plate perforation. J Periodontol. 2018;89(6):661-8. doi:10.1002/JPER.17-0502.

Stelzle F, Frenkel C, Riemann M, Knipfer C, Stockmann P, Nkenke E. The effect of load on heat production, thermal effects and expenditure of time during implant site preparation - an experimental ex vivo comparison between piezosurgery and conventional drilling. Clin Oral Implants Res. 2014;25(2):e140-8. doi: 10.1111/clr.12077.

Fugito Junior K, Cortes AR, de Carvalho Destro R, Yoshimoto M. Comparative study on the cutting effectiveness and heat generation of rotary instruments versus piezoelectric surgery tips using scanning electron microscopy and thermal analysis. Int J Oral Maxillofac Implants. 2018;33(2):345-50. doi: 10.11607/jomi.5806.

Miteva M, Peev S, Hristov I. The adjunctive use of the Er,Cr:YSGG laser in nonsurgical periodontal treatment. Int J Sci Res (IJSR). 2017;6(4):61-4.

Miteva M, Peev S, Hristov I. Management of chronic generalized periodontitis by adjunctive use of diode laser. Int J Sci Res (IJSR). 2017;6(4):65-7.

Zhou X, Lin M, Zhang D, Song Y, Wang Z. Efficacy of Er:YAG laser on periodontitis as an adjunctive non-surgical treatment: A split-mouth randomized controlled study. J Clin Periodontol. 2019;46(5):539-47. doi: 10.1111/jcpe.13107.

Semez G, Luca RE, Cescato A, Faoro V, Mocuţa DE, Todea DCM. Effect of the laser beam on implant site preparation: a preliminary pilot study. Rom J Morphol Embryol. 2018;59(3):861-7.

Tretto PHW, Fabris V, Cericato GO, Sarkis-Onofre R, Bacchi A. Does the instrument used for the implant site preparation influence the bone-implant interface? A systematic review of clinical and animal studies. Int J Oral Maxillofac Surg. 2019;48(1):97-107. doi: 10.1016/j.ijom.2018.04.005.

Zeitouni J, Clough B, Zeitouni S, Saleem M, Al Aisami K, Gregory C. The effects of the Er:YAG laser on trabecular bone micro-architecture: Comparison with conventional dental drilling by micro-computed tomographic and histological techniques. F1000Res. 2017;6:1133. doi: 10.12688/f1000research.12018.1.

Moslemi N, Shahnaz A, Masoumi S, Torabi S, Akbari S. Laser-assisted osteotomy for implant site preparation: a literature review. Implant Dent. 2017

Stübinger S, Biermeier K, Bächi B, Ferguson SJ, Sader R, von Rechenberg B. Comparison of Er:YAG laser, piezoelectric, and drill osteotomy for dental implant site preparation: a biomechanical and histological analysis in sheep. Lasers Surg Med. 2010;42(7):652-61. doi: 10.1002/lsm.20944.

Kesler G, Romanos G, Koren R. Use of Er:YAG laser to improve osseointegration of titanium alloy implants--a comparison of bone healing. Int J Oral Maxillofac Implants. 2006;21(3):375-9.

de Oliveira GJ, Rodrigues CN, Perussi LR, de Souza Rastelli AN, Marcantonio RA, Berbert FL. Effects on bone tissue after osteotomy with different high-energy lasers: an ex vivo study. Photomed Laser Surg. 2016;34(7):291-6. doi: 10.1089/pho.2015.3917.

Marenzi G, Sammartino JC, Quaremba G, Graziano V, El Hassanin A, Qorri ME, et al. Clinical influence of micromorphological structure of dental implant bone drills. Biomed Res Int. 2018;2018:8143962. doi: 10.1155/2018/8143962.

Pirjamalineisiani A, Jamshidi N, Sarafbidabad M, Soltani N. Assessment of experimental thermal, numerical, and mandibular drilling factors in implantology. Br J Oral Maxillofac Surg. 2016;54(4):400-4. doi: 10.1016/j.bjoms.2015.09.017.

Matthews LS, Hirsch C. Temperature measured in human cortical bone when drilling. J Bone Joint Surg Am. 1972;54:297-308.

Ercoli C, Funkenbusch PD, Lee HJ, Moss ME, Graser GN. The influence of drill wear on cutting efficiency and heat production during osteotomy preparation for dental implants: a study of drill durability. Int J Oral Maxillofac Implants. 2004;19(3):335-49.

Er N, Alkan A, Ilday S, Bengu E. Improved dental implant drill durability and performance using heat and wear resistant protective coatings. J Oral Implantol. 2018

Hochscheidt CJ, Shimizu RH, Andrighetto AR, Moura LM, Golin AL, Hochscheidt RC. Thermal variation during osteotomy with different dental implant drills: a standardized study in bovine ribs. Implant Dent. 2017;26(1):73-9. doi: 10.1097/ID.0000000000000535.

Chacon GE, Bower DL, Larsen PE, McGlumphy EA, Beck FM. Heat production by 3 implant drill systems after repeated drilling and sterilization. J Oral Maxillofac Surg. 2006

Scarano A, Piattelli A, Assenza B, Carinci F, Di Donato L, Romani GL, et al. Infrared thermographic evaluation of temperature modifications induced during implant site preparation with cylindrical versus conical drills. Clin Implant Dent Relat Res. 2011;13(4):319-23. doi: 10.1111/j.1708-8208.2009.00209.x.

Strbac GD, Giannis K, Unger E, Mittlböck M, Vasak C, Watzek G, Zechner W. Drilling- and withdrawing-related thermal changes during implant site osteotomies. Clin Implant Dent Relat Res. 2015;17(1):32-43. doi: 10.1111/cid.12091.

Sumer M, Misir AF, Telcioglu NT, Guler AU, Yenisey M. Comparison of heat generation during implant drilling using stainless steel and ceramic drills. J Oral Maxillofac Surg. 2011

Reingewirtz Y, Szmukler-Moncler S, Senger B. Influence of different parameters on bone heating and drilling time in implantology. Clin Oral Implants Res. 1997;8(3):189-97.

Sharawy M, Misch CE, Weller N, Tehemar S. Heat generation during implant drilling: the significance of motor speed. J Oral Maxillofac Surg. 2002;60(10):1160-9.

Iyer S, Weiss C, Mehta A. Effects of drill speed on heat production and the rate and quality of bone formation in dental implant osteotomies. Part I: Relationship between drill speed and heat production. Int J Prosthodont. 1997;10(5):411-4.

Brisman D. The effect of speed, pressure, and time on bone temperature during the drilling of implant sites. Int J Oral Maxillofac Implants. 1996;11(1):35-7.

Bulloch SE, Olsen RG, Bulloch B. Comparison of heat generation between internally guided (cannulated) single drill and traditional sequential drilling with and without a drill guide for dental implants. Int J Oral Maxillofac Implants. 2012;27(6):1456-60.

Cordioli G, Majzoub Z. Heat generation during implant site preparation: an in vitro study. Int J Oral Maxillofac Implants. 1997

Aleisa K, Alkeraidis A, Al-Dwairi ZN, Altahawi H, Lynch E. Implant fixture heat transfer during abutment preparation. J Oral Implantol. 2015;41(3):264-7. doi: 10.1563/AAID-JOI-D-13-00056.

Al-Keraidis A, Aleisa K, Al-Dwairi ZN, Al-Tahawi H, Hsu ML, Lynch E, et al. Heat generation on implant surface during abutment preparation at different elapsed time intervals. Implant Dent. 2017;26(5):700-5. doi: 10.1097/ID.0000000000000600.

Arias SR, Rueggeberg FA, Mettenburg D, Sharawy M, Looney S, Elsayed R, et al. Heat generation during removal of an abutment screw fragment from dental implants. J Prosthet Dent. 2018;119(4):620-5. doi: 10.1016/j.prosdent.2017.06.011.

Huh JB, Eckert SE, Ko SM, Choi YG. Heat transfer to the implant-bone interface during preparation of a zirconia/alumina abutment. Int J Oral Maxillofac Implants. 2009;24(4):679-83.

Trisi P, Berardini M, Falco A, Podaliri Vulpiani M, Perfetti G. Insufficient irrigation induces peri-implant bone resorption: an in vivo histologic analysis in sheep. Clin Oral Implants Res. 2014;25(6):696-701. doi: 10.1111/clr.12127.

Harder S, Egert C, Wenz HJ, Jochens A, Kern M. Influence of the drill material and method of cooling on the development of intrabony temperature during preparation of the site of an implant. Br J Oral Maxillofac Surg. 2013;51(1):74-8. doi: 10.1016/j.bjoms.2012.02.003.

Peev S, Atanasov D. Platelet-rich plasma - an accelerator of the secondary stability of immediate loaded implants. J IMAB - Annual Proceeding (Scientific Papers). 2007;2:38-40.

Sindel A, Dereci Ö, HatipoÄŸlu M, Altay MA, Özalp Ö, Öztürk A. The effects of irrigation volume to the heat generation during implant surgery. Med Oral Patol Oral Cir Bucal. 2017;22(4):e506-e511. doi: 10.4317/medoral.21880.

Kirstein K, Dobrzyński M, Kosior P, Chrószcz A, Dudek K, Fita K, et al. Infrared Thermographic Assessment of Cooling Effectiveness in Selected Dental Implant Systems. Biomed Res Int. 2016;2016:1879468. doi: 10.1155/2016/1879468.

Oh JH, Fang Y, Jeong SM, Choi BH. The effect of low-speed drilling without

irrigation on heat generation: an experimental study. J Korean Assoc Oral Maxillofac Surg. 2016 Feb;42(1):9-12. doi: 10.5125/jkaoms.2016.42.1.9.

Kim SJ, Yoo J, Kim YS, Shin SW. Temperature change in pig rib bone during implant site preparation by low-speed drilling. J Appl Oral Sci. 2010;18(5):522-7. doi: 10.1590/s1678-77572010000500016.

Flanagan D. Heat generated during seating of dental implant fixtures. J Oral Implantol. 2014;40(2):174-81. doi: 10.1563/AAID-JOI-D-13-00261.

Marković A, MiÅ¡ić T, Miličić B, Calvo-Guirado JL, Aleksić Z, Ãđinić A. Heat generation during implant placement in low-density bone: effect of surgical technique, insertion torque and implant macro design. Clin Oral Implants Res. 2013;24(7):798-805. doi: 10.1111/j.1600-0501.2012.02460.x.

Sumer M, Keskiner I, Mercan U, Misir F, Cankaya S. Assessment of heat generation during implant insertion. J Prosthet Dent. 2014;112(3):522-5. doi: 10.1016/j.prosdent.2013.12.011.

Peev S, Sabeva E. Assessment of the heat generation at the marginal bone area during the implant insertion using infrared thermography (experimental study). Int J Sci Res (IJSR). 2016;5(9):822-5.

Koo KT, Kim MH, Kim HY, Wikesjö UM, Yang JH, Yeo IS. Effects of implant drill wear, irrigation, and drill materials on heat generation in osteotomy sites. J Oral Implantol. 2015;41(2):e19-23. doi: 10.1563/AAID-JOI-D-13-00151.

Augustin G, Davila S, Udilljak T, Staroveski T, Brezak D, Babic S. Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill. Int Orthop. 2012;36(7):1449-56. doi:10.1007/s00264-012-1491-z.




DOI: http://dx.doi.org/10.14748/ssmd.v5i1.5950

Refbacks

Article Tools
Email this article (Login required)
About The Author

Elitsa Sabeva
Medical University of Varna
Bulgaria

Department of Periodontology and Dental Implantology, Faculty of Dental Medicine

Font Size


|