Scientific Online Resource System

Scripta Scientifica Medicinae Dentalis

Influence of Different Factors on the Resonance Frequency Analysis in Assessment of Implant Stability - Review

Elitsa Sabeva

Abstract

Introduction

Implant stability is one of the key factors in regard to the successful outcome of implant treatment. Resonance frequency analysis (RFA) is one of the most commonly used methods in measuring the implant primary and secondary stability. The method is reliable and noninvasive, which makes it suitable at the different stages of the implant treatment.

Aim

The aim of this review was to establish some of the factors, which could affect the results obtained during RFA.

Materials and Methods

Articles related to the subject were searched in PubMed and Google Scholar databases. Articles only in English language, published from 1996 to 2019, were included. Variety of keywords in different combinations were used to conduct the search.

Results

Articles, included in this review described clinical and experimental studies. Few reviews of the literature were added as well. Some of the articles considered RFA as a single method for measuring implant stability, while others described its use in combination with other methods. Bone-related factors, implant surface, diameter, length, as well as the position of the transducer of the device were discussed as factors, which could influence the ISQ values.

Conclusion

It seems that among the discussed factors, BIC, bone density, implant diameter and the orientation of the transducer demonstrated more distinct relation to the RFA results. The influence of the implant surface modification and implant length on the ISQ values remains controversial.


Keywords

resonance frequency analysis, dental implant

Full Text


References

Meredith N, Alleyne D, Cawley P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin Oral Implants Res. 1996;7(3):261-7.

Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont. 1998;11(5):491-501.

Sennerby L, Meredith N. Resonance frequency analysis: measuring implant stability and osseointegration. Compend Contin Educ Dent. 1998;19(5):493-8, 500, 502.

Sennerby L, Meredith N. Implant stability measurements using resonance frequency analysis: biological and biomechanical aspects and clinical implications. Periodontol 2000. 2008;47:51-66. doi: 10.1111/j.1600-0757.2008.00267.x.

Pagliani L, Sennerby L, Petersson A, Verrocchi D, Volpe S, Andersson P. The relationship between resonance frequency analysis (RFA) and lateral displacement of dental implants: an in vitro study. J Oral Rehabil. 2013;40(3):221-7. doi: 10.1111/joor.12024.

Meredith N, Shagaldi F, Alleyne D, Sennerby L, Cawley P. The application of resonance frequency measurements to study the stability of titanium implants during healing in the rabbit tibia. Clin Oral Implants Res 1997;8(3):234-43.

Trisi P, Carlesi T, Colagiovanni M, Perfetti G. Implant stability quotient (ISQ) vs direct in vitro measurement of primary stability(micromotion): effect of bone density and insertion torque. J Osteol Biomat. 2010;1:141-51.

Peev S, Atanasov D. Platelet-rich plasma - an accelerator of the secondary stability of immediate loaded implants. J IMAB. 2007;2:38-40.

Singh JP, Gupta AK, Dhiman RK, Roy Chowdhury SK. Comparative study of immediate functional loading and immediate non-functional loading of monocortical implants. Med J Armed Forces India. 2015;71(Suppl 2):S333-9. doi: 10.1016/j.mjafi.2013.11.009.

Javed F, Romanos GE. The role of primary stability for successful immediate loading of dental implants. A literature review. J Dent. 2010;38(8):612-20. doi: 10.1016/j.jdent.2010.05.013.

Glibert M, De Bruyn H, Östman PO. Six-year radiographic, clinical, and soft tissue outcomes of immediately loaded, straight-walled, platform-switched, titanium-alloy implants with nanosurface topography. Int J Oral Maxillofac Implants. 2016;31(1):167-71. doi: 10.11607/jomi.4162.

Hicklin SP, Schneebeli E, Chappuis V, Janner SF, Buser D, Brägger U. Early loading of titanium dental implants with an intra-operatively conditioned hydrophilic implant surface after 21 days of healing. Clin Oral Implants Res. 2016;27(7):875-83. doi: 10.1111/clr.12706.

Glauser R, Sennerby L, Meredith N, Rée A, Lundgren A, Gottlow J, et al. Resonance frequency analysis of implants subjected to immediate or early functional occlusal loading. Successful vs. failing implants. Clin Oral Implants Res. 2004;15(4):428-34. doi: 10.1111/j.1600-0501.2004.01036.x.

Gupta RK, Padmanabhan TV. Resonance frequency analysis. Indian J Dent Res. 2011

Huwiler MA, Pjetursson BE, Bosshardt DD, Salvi GE, Lang NP. Resonance frequency analysis in relation to jawbone characteristics and during early healing of implant installation. Clin Oral Implants Res. 2007;18(3):275-80. doi: 10.1111/j.1600-0501.2007.01336.x.

Andersson P, Pagliani L, Verrocchi D, Volpe S, Sahlin H, Sennerby L. Factors influencing resonance frequency analysis (RFA) measurements and 5-year survival of Neoss dental implants. Int J Dent. 2019;2019:3209872. doi: 10.1155/2019/3209872.

Sim CP, Lang NP. Factors influencing resonance frequency analysis assessed by Osstell mentor during implant tissue integration: I. Instrument positioning, bone structure, implant length. Clin Oral Implants Res. 2010;21(6):598-604. doi: 10.1111/j.1600-0501.2009.01878.x.

Atsumi M, Park SH, Wang HL. Methods used to assess implant stability: current status. Int J Oral Maxillofac Implants. 2007;22(5):743-54.

Meredith N, Book K, Friberg B, Jemt T, Sennerby L. Resonance frequency measurements of implant stability in vivo. A cross-sectional and longitudinal study of resonance frequency measurements on implants in the edentulous and partially dentate maxilla. Clin Oral Implants Res. 1997; 8(3): 226-33.

Nkenke E, Hahn M, Weinzierl K, Radespiel-Tröger M, Neukam FW, Engelke K. Implant stability and histomorphometry: a correlation study in human cadavers using stepped cylinder implants. Clin Oral Implants Res. 2003;14(5):601-9.

Dias DR, Leles CR, Lindh C, Ribeiro-Rotta RF. Marginal bone level changes and implant stability after loading are not influenced by baseline microstructural bone characteristics: 1-year follow-up. Clin Oral Implants Res. 2016;27(10):1212-20. doi: 10.1111/clr.12728.

Degidi M, Daprile G, Piattelli A. Primary stability determination by means of insertion torque and RFA in a sample of 4,135 implants. Clin Implant Dent Relat Res. 2012;14(4):501-7. doi: 10.1111/j.1708-8208.2010.00302.x.

Voumard B, Maquer G, Heuberger P, Zysset PK, Wolfram U. Peroperative estimation of bone quality and primary dental implant stability. J Mech Behav Biomed Mater. 2019;92:24-32. doi: 10.1016/j.jmbbm.2018.12.035.

Ostman PO, Hellman M, Wendelhag I, Sennerby L. Resonance frequency analysis measurements of implants at placement surgery. Int J Prosthodont. 2006;19(1):77-83; discussion 84.

Merheb J, Temmerman A, Rasmusson L, Kübler A, Thor A, Quirynen M. Influence of skeletal and local bone density on dental implant stability in patients with osteoporosis. Clin Implant Dent Relat Res. 2016;18(2):253-60. doi: 10.1111/cid.12290.

Park I-P, Kim S-K, Lee S-J, Lee J-H. The relationship between initial implant stability quotient values and bone-to-implant contact ratio in the rabbit tibia. J Adv Prosthodont. 2011;3(2):76-80. doi: 10.4047/jap.2011.3.2.76.

Açil Y, Sievers J, Gülses A, Ayna M, Wiltfang J, Terheyden H. Correlation between resonance frequency, insertion torque and bone-implant contact in self-cutting threaded implants. Odontology. 2017;105(3):347-53. doi: 10.1007/s10266-016-0265-2.

Dagher M, Mokbel N, Jabbour G, Naaman N. Resonance frequency analysis, insertion torque, and bone to implant contact of 4 implant surfaces: comparison and correlation study in sheep. Implant Dent. 2014;23(6):672-8.

Merheb J, Van Assche N, Coucke W, Jacobs R, Naert I, Quirynen M. Relationship between cortical bone thickness or computerized tomography-derived bone density values and implant stability. Clin Oral Implants Res. 2010;21(6):612-7. doi: 10.1111/j.1600-0501.2009.01880.x.

Hernández-Cortés P, Monje A, Galindo-Moreno P, Catena A, Ortega-Oller I, Salas-Pérez J, et al. An ex vivo model in human femoral heads for histopathological study and resonance frequency analysis of dental implant primary stability. Biomed Res Int. 2014;2014:535929. doi: 10.1155/2014/535929.

Tanaka K, Sailer I, Iwama R, Yamauchi K, Nogami S, Yoda N, et al. Relationship between cortical bone thickness and implant stability at the time of surgery and secondary stability after osseointegration measured using resonance frequency analysis. J Periodontal Implant Sci. 2018;48(6):360-72. doi:10.5051/jpis.2018.48.6.360.

Fu MW, Fu E, Lin FG, Chang WJ, Hsieh YD, Shen EC. Correlation between resonance frequency analysis and bone quality assessments at dental implant recipient sites. Int J Oral Maxillofac Implants. 2017;32(1):180-7. doi: 10.11607/jomi.4684.

Turkyilmaz I, Company AM. Sensitivity of resonance frequency analysis method to assess implant stability. N Y State Dent J. 2011;77(5):44-9

Kwak M-S, Kim S-G. In vitro evaluation of resonance frequency analysis values to different implant contact ratio and stiffness of surrounding material. J Adv Prosthodont. 2013;5(4):428-33. doi: 10.4047/jap.2013.5.4.428.

Pimentel Lopes de Oliveira GJ, Leite FC, Pontes AE, Sakakura CE, Junior EM. Comparison of the primary and secondary stability of implants with anodized surfaces and implants treated by acids: a split-mouth randomized controlled clinical trial. Int J Oral Maxillofac Implants. 2016;31(1):186-90. doi: 10.11607/jomi.4212.

Duncan WJ, Lee MH, Bae TS, Lee SJ, Gay J, Loch C. Anodisation increases integration of unloaded titanium implants in sheep mandible. Biomed Res Int. 2015;2015:857969. doi: 10.1155/2015/857969.

Oue H, Doi K, Oki Y, Makihara Y, Kubo T, Perrotti V, et al. Influence of implant surface topography on primary stability in standardized osteoporosis rabbit model study. J Funct Biomater. 2015;6(1):143-52. doi: 10.3390/jfb6010143.

Dos Santos MV, Elias CN, Cavalcanti Lima JH. The effects of superficial roughness and design on the primary stability of dental implants. Clin Implant Dent Relat Res. 2011;13(3):215-23. doi: 10.1111/j.1708-8208.2009.00202.x.

Siqueira RAC, Aparecida de Mattias Sartori I, Freitas Santos PG, Thiesen MJ, Gonçalves MC, Gasparini Kiatake Fontão FN. resonance frequency analysis of dental implants with 2 types of surface treatment submitted to immediate loading: a prospective clinical study. Implant Dent. 2018;27(3):282-7. doi: 10.1097/ID.0000000000000764.

Souza FÃ, Furtado TSM, Dayube URC, Melo WM, Nishioka RS, Poli PP, et al. Comparative in vivo study of alloy titanium implants with two different surfaces: biomechanical and SEM analysis. Clin Oral Investig. 2019. doi: 10.1007/s00784-019-02872-6.

Tallarico M, Baldini N, Martinolli M, Xhanari E, Kim YJ, Cervino G, et al. Do the new hydrophilic surface have any influence on early success rate and implant stability during osseointegration period? Four-month preliminary results from a split-mouth, randomized controlled trial. Eur J Dent. 2019; 13(1):95-101. doi: 10.1055/s-0039-1688737..

Sabeva E, Peev S, Miteva M, Georgieva M. The impact of the thread design compared to the impact of the surface topography on the primary stability of implants inserted into fresh pig ribs. Scr Sci Medicinae Dentalis. 2017; 3(1):60-4. doi: 10.14748/ssmd.v3i1.2917.

Gómez-Polo M, Ortega R, Gómez-Polo C, Martín C, Celemín A, Del Río J. Does length, diameter, or bone quality affect primary and secondary stability in self-tapping dental implants? J Oral Maxillofac Surg. 2016. pii: S0278-2391(16)00345-1. doi: 10.1016/j.joms.2016.03.011.

Horwitz J, Zuabi O, Peled M. Resonance frequency analysis in immediate loading of dental implants, Refuat Hapeh Vehashinayim (1993). 2003;20(3):80-8, 104.

Barikani H, Rashtak S, Akbari S, Badri S, Daneshparvar N, Rokn A. The effect of implant length and diameter on the primary stability in different bone types. J Dent (Tehran). 2013;10(5):449-55.

Gultekin BA, Sirali A, Gultekin P, Ersanli S. Clinical evaluation of the stability of implants placed at different supracrestal levels. J Istanb Univ Fac Dent. 2016;50(3):21-31. doi: 10.17096/jiufd.96003.

Rokn A, Ghahroudi AR, Mesgarzadeh A, Miremadi A, Yaghoobi S. Evaluation of stability changes in tapered and parallel wall implants: A human clinical trial. J Dent (Tehran) 2011;8(4):186-200.

Lozano-Carrascal N, Salomó-Coll O, Gilabert-Cerdà M, Farré-Pagés N, Gargallo-Albiol J, Hernández-Alfaro F. Effect of implant macro-design on primary stability: A prospective clinical study. Med Oral Patol Oral Cir Bucal. 2016;21(2):e214-21. doi: 10.4317/medoral.21024.

Han J, Lulic M, Lang NP. Factors influencing resonance frequency analysis assessed by Osstell mentor during implant tissue integration: II. Implant surface modifications and implant diameter. Clin Oral Implants Res. 2010;21(6):605-11. doi: 10.1111/j.1600-0501.2009.01909.x.

López AB, Diago MP, Cortissoz OM, Martínez IM. Resonance frequency analysis after the placement of 133 dental implants. Med Oral Patol Oral Cir Bucal. 2006;11(3):E272-6.

Hong J, Lim YJ, Park SO. Quantitative biomechanical analysis of the influence of the cortical bone and implant length on primary stability. Clin Oral Implants Res. 2012;23(10):1193-7. doi: 10.1111/j.1600-0501.2011.02285.x.

Tsolaki IN, Tonsekar PP, Najafi B, Drew HJ, Sullivan AJ, Petrov SD. Comparison of osteotome and conventional drilling techniques for primary implant stability: an in vitro study. J Oral Implantol. 2016;42(4):321-5. doi: 10.1563/aaid-joi-D-15-00176.

Möhlhenrich SC, Kniha K, Heussen N, Hölzle F, Modabber A. Effects on primary stability of three different techniques for implant site preparation in synthetic bone models of different densities. Br J Oral Maxillofac Surg. 2016. pii: S0266-4356(16)30175-9. doi: 10.1016/j.bjoms.2016.07.004.

Bataineh AB, Al-Dakes AM. The influence of length of implant on primary stability: An in vitro study using resonance frequency analysis. J Clin Exp Dent. 2017;9(1):e1-e6. doi:10.4317/jced.53302.

Capek L, Simunek A, Slezak R, Dzan L. Influence of the orientation of the Osstell transducer during measurement of dental implant stability using resonance frequency analysis: a numerical approach. Med Eng Phys. 2009;31(7):764-9. doi: 10.1016/j.medengphy.2009.02.003.

Veltri M, Balleri P, Ferrari M. Influence of transducer orientation on Osstell stability measurements ofosseointegrated implants. Clin Implant Dent Relat Res. 2007; 9(1):60-4. doi: 10.1111/j.1708-8208.2007.00035.x.

Pattijn V, Jaecques SV, De Smet E, Muraru L, Van Lierde C, Van der Perre G, et al. Resonance frequency analysis of implants in the guinea pig model: influence of boundary conditions and orientation of the transducer. Med Eng Phys. 2007;29(2):182-90. doi: 10.1016/j.medengphy.2006.02.010.

Valderrama P, Oates TW, Jones AA, Simpson J, Schoolfield JD, Cochran DL. Evaluation of two different resonance frequency devices to detect implant stability: a clinical trial. J Periodontol. 2007;78(2):262-72. doi: 10.1902/jop.2007.060143.

Geckili O, Cilingir A, Bural C, Bilmenoglu C, Bilhan H. Determination of the optimum torque to tighten the smartpegs of magnetic resonance frequency analyses devices: an ex vivo study. J Oral Implantol. 2015;41(6):e252-6. doi: 10.1563/aaid-joi-D-14-00266.

Salatti DB, Pelegrine AA, Gehrke S, Teixeira ML, Moshaverinia A, Moy PK. Is there a need for standardization of tightening force used to connect the transducer for resonance frequency analysis in determining implant stability? Int J Oral Maxillofac Implants. 2019; 34(4):886-90. doi: 10.11607/jomi.7361.




DOI: http://dx.doi.org/10.14748/ssmd.v5i1.5951

Refbacks

Article Tools
Email this article (Login required)
About The Author

Elitsa Sabeva
Medical University of Varna

Department of Periodontology and Dental Implantology, Faculty of Dental Medicine

Font Size


|