Scientific Online Resource System

Scripta Scientifica Medicinae Dentalis

Application of dental lasers in bone surgery

Velimira Georgieva, Elitza Djongova, Izabella Petrova

Abstract

Introduction: In oral surgery, lasers have been extensively used in soft-tissue manipulations, yet their application to bone tissue remains limited.

Aim: The literature review in the present paper aims to discuss and summarize current applications of dental lasers on bone tissue, specifying the advantages and drawbacks related to their usage, and also indicate the types of lasers appropriate for bone cutting.

Materials and Methods: The academic databases used as sources are: Pub Med, Google Scholar, and Medline, from 2005 to December 2020. The academic search returned a total of 321 publications relevant to the topic concerned. Twenty-nine articles were then shortlisted as containing specific information on the practical application of lasers in bone surgery. The following keywords or combinations of them were used: “bone cutting”; “oral surgery”; “laser”.

Results: Dental lasers have found many applications in bone surgeries such as crown lengthening, extraction of impacted wisdom teeth, apical osteotomy, cystectomy, autogenous bone grafting procedures, implant surgery, etc. Laser bone removal provides some indisputable advantages over the conventional methods with mechanical drills: operative comfort for the patient, absence of the unpleasant sensations of vibration, pressure and noise, a decontaminating, bactericidal and sterilizing effect on the irradiated bone tissues, cleaner ablated surfaces without debris, microcracks and smear layer, lack of thermal damage to the bone, and minimal bone loss. The main downside of laser use is associated with the extended surgical time and the lack of tactile sensation due to their non-contact mode of operation. Er:YAG and Er,Cr:YSGG lasers remain the most widely used ones for bone removal due to their minimal thermal effects and negative impact on adjacent tissues.

Conclusion: Lasers have the potential to become a more efficient alternative to conventional mechanical instruments for osteotomy. However, due to the current limited application of dental lasers in bone surgery, they need to be further explored for use in this field and certain issues remain yet to be resolved. Therefore, further studies must be carried out to obtain sufficient evidence that lasers are superior to conventional techniques for bone removal.


Keywords

laser, bone cutting, oral surgery

Full Text


References

Passi D, Pal US, Mohammad S, Singh RK, Mehrotra D, Singh G, et al. Laser vs bur for bone cutting in impacted mandibular third molar surgery: A randomized controlled trial. J Oral Biol Craniofac Res. 2013;3(2):57-62. doi: 10.1016/j.jobcr.2013.03.006.

Romeo U, Libotte F, Palaia G, Tenore G, Galanakis A, Annibali S. Is erbium:yttrium-aluminum-garnet laser versus conventional rotary osteotomy better in the postoperative period for lower third molar surgery? Randomized split-mouth clinical study. J Oral Maxillofac Surg. 2015;73(2):211-8. doi: 10.1016/j.joms.2014.08.013.

Stübinger S, Ghanaati S, Saldamli B, Kirkpatrick CJ, Sader R. Er:YAG laser osteotomy: preliminary clinical and histological results of a new technique for contact-free bone surgery. Eur Surg Res. 2009;42(3):150-6. doi: 10.1159/000197216.

Lee CY. Procurement of autogenous bone from ramus with simultaneous the mandibular third-molar removal for bone grafting using the Cr:YSGG laser: a preliminary report. J Oral Implantol. 2005;31(1):32-8. doi: 10.1563/0-716.1.

Lietzau M, Smeets R, Hanken H, Heiland M, Apel C. Apicoectomy using Er:YAG laser in association with microscope: a comparative retrospective investigation. Photomed Laser Surg. 2013;31(3):110-5. doi: 10.1089/pho.2012.3393.

Ugurlu F, Cavus O, Kaya A, Sener CB. Evaluation of dental anxiety in patients undergoing dentoalveolar surgery with laser treatment. Photomed Laser Surg. 2013;31(4):169-73. doi: 10.1089/pho.2012.3364.

Hajji M, Franzen R, Grümer S, Modabber A, Nasher R, Prescher A, et al. Removal of dental implants using the erbium,chromium:yttrium-scandium-gallium-garnet laser and the conventional trephine bur: an in vitro comparative study. Photomed Laser Surg. 2016;34(2):61-7. doi: 10.1089/pho.2015.3981.

Stübinger S, Biermeier K, Bächi B, Ferguson SJ, Sader R, von Rechenberg B. Comparison of Er:YAG laser, piezoelectric, and drill osteotomy for dental implant site preparation: a biomechanical and histological analysis in sheep. Lasers Surg Med. 2010;42(7):652-61. doi: 10.1002/lsm.20944.

Chen CK, Wu YT, Chang NJ, Lan WH, Ke JH, Fu E, et al. Er:YAG laser for surgical crown lengthening: a 6-month clinical study. Int J Periodontics Restorative Dent. 2017;37(2):e149-53. doi: 10.11607/prd.2551.

Capodiferro S, Tempesta A, Limongelli L, Barile G, Di Venere D, Corsalini M. Minimally invasive (flapless) crown lengthening by erbium:YAG laser in aesthetic zone. F1000Res. 2020;9:1185. doi: 10.12688/f1000research.26008.3.

Lowe RA. Clinical use of the Er,Cr: YSGG laser for osseous crown lengthening: redefining the standard of care. Pract Proced Aesthet Dent. 2006;18(4):S2-9; quiz S13.

Flax HD. Soft and hard tissue management using lasers in esthetic restoration. Dent Clin North Am. 2011;55(2):383-402, x. doi: 10.1016/j.cden.2011.01.008.

.

Atalay B, Yalcin S, Emes Y, Aktas I, Aybar B, Issever H, et al. Bisphosphonate-related osteonecrosis: laser-assisted surgical treatment or conventional surgery? Lasers Med Sci. 2011;26(6):815-23. doi: 10.1007/s10103-011-0974-2.

Stübinger S, Landes C, Seitz O, Sader R. Er:YAG laser osteotomy for intraoral bone grafting procedures: a case series with a fiber-optic delivery system. J Periodontol. 2007;78(12):2389-94. doi: 10.1902/jop.2007.070162.

Stübinger S, Nuss K, Landes C, von Rechenberg B, Sader R. Harvesting of intraoral autogenous block grafts from the chin and ramus region: preliminary results with a variable square pulse Er:YAG laser. Lasers Surg Med. 2008;40(5):312-8. doi: 10.1002/lsm.20639.

Gabrić Pandurić D, Bago I, Katanec D, Zabkar J, Miletić I, Anić I. Comparison of Er:YAG laser and surgical drill for osteotomy in oral surgery: an experimental study. J Oral Maxillofac Surg. 2012;70(11):2515-21. doi: 10.1016/j.joms.2012.06.192.

Martins GL, Puricelli E, Baraldi CE, Ponzoni D. Bone healing after bur and Er:YAG laser ostectomies. J Oral Maxillofac Surg. 2011;69(4):1214-20. doi: 10.1016/j.joms.2010.02.029.

Papadaki M, Doukas A, Farinelli WA, Kaban L, Troulis M. Vertical ramus osteotomy with Er:YAG laser: a feasibility study. Int J Oral Maxillofac Surg. 2007;36(12):1193-7. doi: 10.1016/j.ijom.2007.05.019.

Baek KW, Dard M, Zeilhofer HF, Cattin PC, Juergens P. Comparing the Bone Healing After Cold Ablation Robot-Guided Er:YAG Laser Osteotomy and Piezoelectric Osteotomy-A Pilot Study in a Minipig Mandible. Lasers Surg Med. 2020. doi: 10.1002/lsm.23281.

Aljekhedab F, Zhang W, Haugen HK, Wohl GR, El-Desouki MM, Fang Q. Influence of environmental conditions in bovine bone ablation by ultrafast laser. J Biophotonics. 2019;12(6):e201800293. doi: 10.1002/jbio.201800293.

Medeiros Júnior R, Gueiros LA, Silva IH, de Albuquerque Carvalho A, Leão JC. Labial frenectomy with Nd:YAG laser and conventional surgery: a comparative study. Lasers Med Sci. 2015;30(2):851-6. doi:10.1007/s10103-013-1461-8

Isola G, Matarese G, Lo Giudice G, Briguglio F, Alibrandi A, Crupi A, et al. A new approach for the treatment of lateral periodontal cysts with an 810-nm diode laser. Int J Periodontics Restorative Dent. 2017;37(1):e120-9. doi:10.11607/prd.2981

Kuttenberger JJ, Stübinger S, Waibel A, Werner M, Klasing M, Ivanenko M, et al. Computer-guided CO2-laser osteotomy of the sheep tibia: technical prerequisites and first results. Photomed Laser Surg. 2008;26(2):129-36. doi: 10.1089/pho.2007.2139.

Romeo U, Del Vecchio A, Palaia G, Tenore G, Visca P, Maggiore C. Bone damage induced by different cutting instruments--an in vitro study. Braz Dent J. 2009;20(2):162-8. doi: 10.1590/s0103-64402009000200013.

Baek KW, Deibel W, Marinov D, Griessen M, Dard M, Bruno A, et al. A comparative investigation of bone surface after cutting with mechanical tools and Er:YAG laser. Lasers Surg Med. 2015;47(5):426-32. doi: 10.1002/lsm.22352.

Pantawane MV, Chipper RT, Robertson WB, Khan RJK, Fick DP, Dahotre NB. Evolution of surface morphology of Er:YAG laser-machined human bone. Lasers Med Sci. 2020;35(7):1477-85. doi: 10.1007/s10103-019-02927-w.

Augello M, Deibel W, Nuss K, Cattin P, Jürgens P. Comparative microstructural analysis of bone osteotomies after cutting by computer-assisted robot-guided laser osteotome and piezoelectric osteotome: an in vivo animal study. Lasers Med Sci. 2018;33(7):1471-8. doi: 10.1007/s10103-018-2502-0.

Rachmanis N, McGuinness GB, McGeough JA. Characterisation of debris from laser and mechanical cutting of bone. Proc Inst Mech Eng H. 2014;228(7):735-9. doi: 10.1177/0954411914541089.

Baek KW, Deibel W, Marinov D, Griessen M, Bruno A, Zeilhofer HF, et al. Clinical applicability of robot-guided contact-free laser osteotomy in cranio-maxillo-facial surgery: in-vitro simulation and in-vivo surgery in minipig mandibles. Br J Oral Maxillofac Surg. 2015;53(10):976-81. doi: 10.1016/j.bjoms.2015.07.019.




DOI: http://dx.doi.org/10.14748/ssmd.v8i1.8221

Refbacks

Article Tools
Email this article (Login required)
About The Authors

Velimira Georgieva
Medical University of Varna
Bulgaria

Department of Oral Surgery, Faculty of Dental Medicine

Elitza Djongova
Medical University of Varna
Bulgaria

Department of Oral Surgery, Faculty of Dental Medicine

Izabella Petrova
Medical University of Varna
Bulgaria

Department of Oral Surgery, Faculty of Dental Medicine

Font Size


|