Scientific Online Resource System

Scripta Scientifica Medicinae Dentalis

Accuracy and reliability of lower dental arch reconstructions

Konstantin Kostadinov, Stefan Peev

Abstract

Introduction: In the literature, there is information regarding the accuracy of models generated by conventional impression materials and intraoral scanners, but data on the accuracy of 3D models generated from cone-beam computed tomography (CBCT) is still lacking.

Aim: The aim of this article is to investigate and compare the accuracy of tooth reconstructions made on 3D models generated from CBCT and intraoral scanning, as well as on plaster models from conventional impression materials, to the results of intraoral measurements using a digital caliper.

Materials and Methods: The study included a total of 38 individuals (16 males and 22 females). After the initial examination, we scheduled appointments for the approved participants to undergo clinical procedures and imaging studies in the following sequence: 1. placement of composite markers; 2. physical measurements; 3. intraoral scanning; 4. CBCT; 5. capturing a conventional impression; 6. removal of composite markers. 

Following are the laboratory and measurement stages for the study: 7. casting gypsum models; 8. measurements on gypsum models; 9. converting the DICOM files from CBCT scans to STL files; 10. conducting measurements on digital models from CBCT and intraoral scanning.

Results: Results from the reliability assessment of the researcher’s measurements for the studied modalities indicate a correlation coefficient ranging from moderate to excellent with very high statistical significance. Concerning accuracy, differences are observed between individual modalities. 

Conclusion: In summary, conventional methods and materials still outperform intraoral scanners in terms of the accuracy of the obtained reconstructions. 3D models generated from CBCT scans are generally the least satisfactory among the tested modalities, with deviations typically within clinically acceptable values.


Keywords

intraoral scanner, cone-beam computer tomography, conventional impression, accuracy, comparison

Full Text


References

Brownstein, Sheri A.; Murad, Aseel; Hunt, Ronald J. Implementation of new technologies in U.S. dental school curricula. J Dent Educ. 2015;79(3):259–64. doi:10.1002/j.0022-0337.2015.79.3.tb05880.x.

Iacopino AM. The influence of "new science" on dental education: current concepts, trends, and models for the future. J Dent Educ. 2007;71(4):450-62.

Iliev G. The art and future of digital dentistry. J Med Dent Pract. 2021;8(1):1278-84. doi:10.18044/Medinform.202181.1278.

Macleod I, Heath N. Cone-beam computed tomography (CBCT) in dental practice. Dent Update. 2008;35(9):590–8. doi:10.12968/denu.2008.35.9.590

Schepke U, Meijer HJ, Kerdijk W, Cune MS. Digital versus analog complete-arch impressions for single-unit premolar implant crowns: Operating time and patient preference. J Prosthet Dent. 2015;114(3):403-6.e1. doi: 10.1016/j.prosdent.2015.04.003.

Naidu D, Freer TJ. Validity, reliability, and reproducibility of the iOC intraoral scanner: a comparison of tooth widths and Bolton ratios. Am J Orthod Dentofacial Orthop. 2013;144(2):304-10. doi: 10.1016/j.ajodo.2013.04.011.

Mallya SM, Lam E. White and Pharoah’s oral radiology, principles and interpretation. 8th ed. Mosby; 2018.

Hassan B, van der Stelt P, Sanderink G. Accuracy of three-dimensional measurements obtained from cone beam computed tomography surface-rendered images for cephalometric analysis: influence of patient scanning position. Eur J Orthod. 2009;31(2):129-34. doi: 10.1093/ejo/cjn088.

Ludlow JB, Laster WS, See M, Bailey LJ, Hershey HG. Accuracy of measurements of mandibular anatomy in cone beam computed tomography images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103(4):534-42. doi: 10.1016/j.tripleo.2006.04.008.

Damstra J, Fourie Z, Huddleston Slater JJ, Ren Y. Accuracy of linear measurements from cone-beam computed tomography-derived surface models of different voxel sizes. Am J Orthod Dentofacial Orthop. 2010;137(1):16.e1-6; discussion 16-7. doi: 10.1016/j.ajodo.2009.06.016.

Fernandes TM, Adamczyk J, Poleti ML, Henriques JF, Friedland B, Garib DG. Comparison between 3D volumetric rendering and multiplanar slices on the reliability of linear measurements on CBCT images: an in vitro study. J Appl Oral Sci. 2015;23(1):56-63. doi: 10.1590/1678-775720130445.

Hassan B, Couto Souza P, Jacobs R, de Azambuja Berti S, van der Stelt P. Influence of scanning and reconstruction parameters on quality of three-dimensional surface models of the dental arches from cone beam computed tomography. Clin Oral Investig. 2010;14(3):303-10. doi: 10.1007/s00784-009-0291-3.

Poleti ML, Fernandes TM, Pagin O, Moretti MR, Rubira-Bullen IR. Analysis of linear measurements on 3D surface models using CBCT data segmentation obtained by automatic standard pre-set thresholds in two segmentation software programs: an in vitro study. Clin Oral Investig. 2016;20(1):179-85. doi: 10.1007/s00784-015-1485-5.

Baumgaertel S, Palomo JM, Palomo L, Hans MG. Reliability and accuracy of cone-beam computed tomography dental measurements. Am J Orthod Dentofacial Orthop. 2009;136(1):19-25; discussion 25-8. doi: 10.1016/j.ajodo.2007.09.016.

Benavides E, Rios HF, Ganz SD, An CH, Resnik R, Reardon GT, et al. Use of cone beam computed tomography in implant dentistry: the International Congress of Oral Implantologists consensus report. Implant Dent. 2012;21(2):78-86. doi: 10.1097/ID.0b013e31824885b5.

Cevidanes LH, Styner MA, Proffit WR. Image analysis and superimposition of 3-dimensional cone-beam computed tomography models. Am J Orthod Dentofacial Orthop. 2006;129(5):611-8. doi: 10.1016/j.ajodo.2005.12.008.

Kapila SD, Nervina JM. Cone-beam computed tomography in orthodontics: assessment of treatment outcomes and indications for its use. Dentomaxillofacial Radiology, 2015;44(1):20140282. doi: 10.1259/dmfr.20140282.

Lagravère MO, Carey J, Toogood RW, Major PW. Three-dimensional accuracy of measurements made with software on cone-beam computed tomography images. Am J Orthod Dentofacial Orthop. 2008 Jul;134(1):112-6. doi: 10.1016/j.ajodo.2006.08.024.

Liang X, Lambrichts I, Sun Y, Denis K, Hassan B, Li L, Pauwels R, Jacobs R. A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT). Part II: On 3D model accuracy. Eur J Radiol. 2010;75(2):270-4. doi: 10.1016/j.ejrad.2009.04.016.

Dusseldorp JK, Stamatakis HC, Ren Y. Soft tissue coverage on the segmentation accuracy of the 3D surface-rendered model from cone-beam CT. Clin Oral Investig. 2017;21(3):921-30. doi: 10.1007/s00784-016-1844-x.

Periago DR, Scarfe WC, Moshiri M, Scheetz JP, Silveira AM, Farman AG. Linear accuracy and reliability of cone beam CT derived 3-dimensional images constructed using an orthodontic volumetric rendering program. Angle Orthod. 2008;78(3):387-95. doi: 10.2319/122106-52.1.

Lascala CA, Panella J, Marques MM. Analysis of the accuracy of linear measurements obtained by cone beam computed tomography (CBCT-NewTom). Dentomaxillofac Radiol. 2004;33(5):291-4. doi: 10.1259/dmfr/25500850.

Kim M, Huh KH, Yi WJ, Heo MS, Lee SS, Choi SC. Evaluation of accuracy of 3D reconstruction images using multi-detector CT and cone-beam CT. Imaging Sci Dent. 2012;42(1):25-33. doi: 10.5624/isd.2012.42.1.25.

Ender A, Mehl A. Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision. J Prosthet Dent. 2013;109(2):121-8. doi: 10.1016/S0022-3913(13)60028-1.

Ender A, Mehl A. Full arch scans: conventional versus digital impressions--an in-vitro study. Int J Comput Dent. 2011;14(1):11-21. English, German.

Flügge TV, Schlager S, Nelson K, Nahles S, Metzger MC. Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner. Am J Orthod Dentofacial Orthop. 2013;144(3):471-8. doi: 10.1016/j.ajodo.2013.04.017.

Rudolph H, Salmen H, Moldan M, Kuhn K, Sichwardt V, Wöstmann B, et al. Accuracy of intraoral and extraoral digital data acquisition for dental restorations. J Appl Oral Sci. 2016;24(1):85-94. doi: 10.1590/1678-775720150266.

Lee JJ, Jeong ID, Park JY, Jeon JH, Kim JH, Kim WC. Accuracy of single-abutment digital cast obtained using intraoral and cast scanners. J Prosthet Dent. 2017;117(2):253-9. doi: 10.1016/j.prosdent.2016.07.021.

Yang X, Lv P, Liu Y, Si W, Feng H. Accuracy of digital impressions and fitness of single crowns based on digital impressions. Materials (Basel). 2015;8(7):3945-57. doi: 10.3390/ma8073945.

Almeida e Silva JS, Erdelt K, Edelhoff D, Araújo É, Stimmelmayr M, Vieira LC, Güth JF. Marginal and internal fit of four-unit zirconia fixed dental prostheses based on digital and conventional impression techniques. Clin Oral Investig. 2014;18(2):515-23. doi: 10.1007/s00784-013-0987-2.

Boeddinghaus M, Breloer ES, Rehmann P, Wöstmann B. Accuracy of single-tooth restorations based on intraoral digital and conventional impressions in patients. Clin Oral Investig. 2015;19(8):2027-34. doi: 10.1007/s00784-015-1430-7.

Dauti R, Cvikl B, Lilaj B, Heimel P, Moritz A, Schedle A. Micro-CT evaluation of marginal and internal fit of cemented polymer infiltrated ceramic network material crowns manufactured after conventional and digital impressions. J Prosthodont Res. 2019;63(1):40-46. doi: 10.1016/j.jpor.2018.04.005.

Svanborg P, Skjerven H, Carlsson P, Eliasson A, Karlsson S, Ortorp A. Marginal and internal fit of cobalt-chromium fixed dental prostheses generated from digital and conventional impressions. Int J Dent. 2014;2014:534382. doi: 10.1155/2014/534382.

Imburgia M, Logozzo S, Hauschild U, Veronesi G, Mangano C, Mangano FG. Accuracy of four intraoral scanners in oral implantology: a comparative in vitro study. BMC Oral Health. 2017;17(1):92. doi: 10.1186/s12903-017-0383-4.

Mangano FG, Hauschild U, Veronesi G, Imburgia M, Mangano C, Admakin O. Trueness and precision of 5 intraoral scanners in the impressions of single and multiple implants: a comparative in vitro study. BMC Oral Health. 2019;19(1):101. doi: 10.1186/s12903-019-0792-7.

Nedelcu RG, Persson AS. Scanning accuracy and precision in 4 intraoral scanners: an in vitro comparison based on 3-dimensional analysis. J Prosthet Dent. 2014;112(6):1461-71. doi: 10.1016/j.prosdent.2014.05.027.

Gogushev K, Abadzhiev M, Georgieva K, Denkov I. Intraoral scanning systems based on the principle of confocal microscopy used in modern prosthetic dental medicine. Varna Med Forum. 2017;6(1):80-5. doi:10.14748/vmf.v6i1.1925.

Song J, Kim M. Accuracy on scanned images of full arch models with orthodontic brackets by various intraoral scanners in the presence of artificial saliva. Biomed Res Int. 2020;2020:2920804. doi: 10.1155/2020/2920804.

Sree lakshmi SB, Somasundram J, Geetha RV. Disinfection of impression material – a review. Eur J Mol Clin Med. 2020;7(1):978-85.

Ting-Shu S, Jian S. Intraoral Digital Impression Technique: A Review. J Prosthodont. 2015;24(4):313-21. doi: 10.1111/jopr.12218.

Anh JW, Park JM, Chun YS, Kim M, Kim M. A comparison of the precision of three-dimensional images acquired by 2 digital intraoral scanners: effects of tooth irregularity and scanning direction. Korean J Orthod. 2016;46(1):3-12. doi:10.4041/kjod.2016.46.1.3.

Uhm SH, Kim JH, Jiang HB, Woo CW, Chang M, Kim KN, et al. Evaluation of the accuracy and precision of four intraoral scanners with 70% reduced inlay and four-unit bridge models of international standard. Dent Mater J. 2017;36(1):27-34. doi: 10.4012/dmj.2016-064.

. Güth JF, Runkel C, Beuer F, Stimmelmayr M, Edelhoff D, Keul C. Accuracy of five intraoral scanners compared to indirect digitalization. Clin Oral Investig. 2017;21(5):1445-55. doi: 10.1007/s00784-016-1902-4.

Kim JE, Amelya A, Shin Y, Shim JS. Accuracy of intraoral digital impressions using an artificial landmark. J Prosthet Dent. 2017;117(6):755-61. doi: 10.1016/j.prosdent.2016.09.016.

Gan N, Xiong Y, Jiao T. Accuracy of intraoral digital impressions for whole upper jaws, including full dentitions and palatal soft tissues. PLoS One. 2016;11(7):e0158800. doi: 10.1371/journal.pone.0158800.

Mijiritsky E, Shacham M, Meilik Y, Dekel-Steinkeller M. Clinical influence of mandibular flexure on oral rehabilitation: narrative review. Int J Environ Res Public Health. 2022;19(24):16748. doi: 10.3390/ijerph192416748.

Chen Y, Zhai Z, Li H, Yamada S, Matsuoka T, Ono S, et al. Influence of liquid on the tooth surface on the accuracy of intraoral scanners: an in vitro study. J Prosthodont. 2022;31(1):59-64. doi: 10.1111/jopr.13358.

Revilla-León M, Subramanian SG, Att W, Krishnamurthy VR. Analysis of different illuminance of the room lighting condition on the accuracy (trueness and precision) of an intraoral scanner. J Prosthodont. 2021;30(2):157-62. doi: 10.1111/jopr.13276.

Revilla-León M, Gohil A, Barmak AB, Gómez-Polo M, Pérez-Barquero JA, Att W, et al. Influence of ambient temperature changes on intraoral scanning accuracy. J Prosthet Dent. 2022:S0022-3913(22)00061-0. doi: 10.1016/j.prosdent.2022.01.012.

Müller P, Ender A, Joda T, Katsoulis J. Impact of digital intraoral scan strategies on the impression accuracy using the TRIOS Pod scanner. Quintessence Int. 2016;47(4):343-9. doi: 10.3290/j.qi.a35524.

Ender A, Mehl A. Influence of scanning strategies on the accuracy of digital intraoral scanning systems. Int J Comput Dent. 2013;16(1):11-21. English, German.

Medina-Sotomayor P, Pascual-Moscardó A, Camps I. Accuracy of four digital scanners according to scanning strategy in complete-arch impressions. PLoS One. 2018;13(9):e0202916. doi: 10.1371/journal.pone.0202916.

Rehmann P, sichwardt v, wöstmann b. intraoral scanning Systems: Need for Maintenance. Int J Prosthodont. 2017;30(1):27-29. doi: 10.11607/ijp.4976.

Chew AA, Esguerra RJ, Teoh KH, Wong KM, Ng SD, Tan KB. Three-dimensional accuracy of digital implant impressions: effects of different scanners and implant level. Int J Oral Maxillofac Implants. 2017;32(1):70-80. doi: 10.11607/jomi.4942.

Lee SJ, Gallucci GO. Digital vs. conventional implant impressions: efficiency outcomes. Clin Oral Implants Res. 2013;24(1):111-5. doi: 10.1111/j.1600-0501.2012.02430.x.

Park HR, Park JM, Chun YS, Lee KN, Kim M. Changes in views on digital intraoral scanners among dental hygienists after training in digital impression taking. BMC Oral Health. 2015;15(1):151. doi: 10.1186/s12903-015-0140-5.

Ender A, Attin T, Mehl A. In vivo precision of conventional and digital methods of obtaining complete-arch dental impressions. J Prosthet Dent. 2016;115(3):313-20. doi: 10.1016/j.prosdent.2015.09.011.

Carbajal Mejía JB, Wakabayashi K, Nakamura T, Yatani H. Influence of abutment tooth geometry on the accuracy of conventional and digital methods of obtaining dental impressions. J Prosthet Dent. 2017;118(3):392-9. doi: 10.1016/j.prosdent.2016.10.021.

Ali AO. Accuracy of digital impressions achieved from five different digital impression systems. Dent. 2015;5(5):1-6. doi:10.4172/2161-1122.1000300.

Ender A, Zimmermann M, Attin T, Mehl A. In vivo precision of conventional and digital methods for obtaining quadrant dental impressions. Clin Oral Investig. 2016;20(7):1495-504. doi: 10.1007/s00784-015-1641-y.

Kisov H. Impression materials and impression techniques. Index;1998.

Gonçalves FS, Popoff DA, Castro CD, Silva GC, Magalhães CS, Moreira AN. Dimensional stability of elastomeric impression materials: a critical review of the literature. Eur J Prosthodont Restor Dent. 2011;19(4):163-6.

Dugal R, Railkar B, Musani S. Comparative evaluation of dimensional accuracy of different polyvinyl siloxane putty-wash impression techniques-in vitro study. J Int Oral Health. 2013;5(5):85-94.

Hung SH, Purk JH, Tira DE, Eick JD. Accuracy of one-step versus two-step putty wash addition silicone impression technique. J Prosthet Dent. 1992;67(5):583-9. doi: 10.1016/0022-3913(92)90151-y.

Idris B, Houston F, Claffey N. Comparison of the dimensional accuracy of one- and two-step techniques with the use of putty/wash addition silicone impression materials. J Prosthet Dent. 1995;74(5):535-41. doi: 10.1016/s0022-3913(05)80358-0.

Rueda LJ, Sy-Muñoz JT, Naylor WP, Goodacre CJ, Swartz ML. The effect of using custom or stock trays on the accuracy of gypsum casts. Int J Prosthodont. 1996;9(4):367-73.

Valderhaug J, Fløystrand F. Dimensional stability of elastomeric impression materials in custom-made and stock trays. J Prosthet Dent. 1984;52(4):514-7. doi: 10.1016/0022-3913(84)90336-6.

Bomberg TJ, Goldfogel MH, Hoffman W Jr, Bomberg SE. Considerations for adhesion of impression materials to impression trays. J Prosthet Dent. 1988;60(6):681-4. doi: 10.1016/0022-3913(88)90398-8.

Thouati A, Deveaux E, Iost A, Behin P. Dimensional stability of seven elastomeric impression materials immersed in disinfectants. J Prosthet Dent. 1996;76(1):8-14. doi: 10.1016/s0022-3913(96)90338-8.

Georgescu CE, Skaug N, Patrascu I. Cross infection in dentistry. Rom Biotechnol Lett. 2002;7:861-8.




DOI: http://dx.doi.org/10.14748/ssmd.v9i2.9242

Refbacks

Article Tools
Email this article (Login required)
About The Authors

Konstantin Kostadinov
Medical University of Varna
Bulgaria

Department of Periodontology and Dental Implantology, Faculty of Dental Medicine

Stefan Peev
Medical University of Varna

Department of Periodontology and Dental Implantology, Faculty of Dental Medicine

Font Size


|