INTRODUCTION: Apical surgery is a method belonging to endodontic surgery, applicable in cases where conventional endodontic treatment or retreatment cannot lead to a healing process by itself. The primary objective is to create optimal conditions for the recovery of the periradicular tissue. The success of this procedure depends on various factors. Among them is the size of the bone defect. The formation of bone around the tooth root following apical surgery is crucial for its long-term prognosis. Tissue engineering has the potential to overcome the limitations of already existing bone regeneration methods through the application of scaffolding materials for the migration and attachment of cells with osteogenic potential. Natural polymers like collagen demonstrate significant suitability for these purposes.
AIM: The aim of this study is to summarize the data in the literature regarding the application of collagen biomaterials in the field of bone regeneration. The healing processes after apical surgery were examined and the potential role of collagen materials in stimulating osteogenesis was also evaluated.
MATERIALS AND METHODS: The present literature review is based on different researches in Google Scholar, PubMed, and Web of Science databases to obtain the needed information. The keywords used were: collagen-based materials, bone repair, apicoectomy, tissue engineering, and periapical surgery. All the articles that were researched were in English.
RESULTS: There is evidence for the positive impact of collagen materials on bone regeneration processes. Applied alone or in combination with other materials, the porous structure of the collagen sponge has been proven to be a favorable environment for cell adhesion and proliferation. It possesses suitable structural characteristics to be used as a potential substrate to enhance bone regeneration.
CONCLUSION: Despite collagen’s favorable biological characteristics, the question regarding its influence on the proliferation of connective tissue in complicated periapical lesions remains uncertain. Presently, there is a lack of data in the literature describing complete bone recovery in these defects achieved only by the application of collagen sponges. Further clinical studies are needed.
Bucchi C, Rosen E, Taschieri S. Non-surgical root canal treatment and retreatment versus apical surgery in treating apical periodontitis: A systematic review. IntEndod J. 2023;56 Suppl 3:475-486. doi: 10.1111/iej.13793.
Kim S, Kratchman S. Modern endodontic surgery concepts and practice: A review. J Endod. 2006;32(7):601-23. doi: 10.1016/j.joen.2005.12.010.
Serrano-Giménez M, Sánchez-Torres A, Gay-Escoda C. Prognostic factors on periapical surgery: a systematic review. Med Oral Patol Oral Cir Bucal. 2015; 20:e715. doi: 10.4317/medoral.20613.
Tahmasebi E, AlamM, Yazdanian M, Tebyanian H, Yazdanian A, Seifalian A, et al. Current biocompatible materials in oral regeneration: a comprehensive overview of composite materials. J Mater Res Technol.2020;9(5):11731-55.doi: 10.1016/j.jmrt.2020.08.042.
Zhang D, Wu X, Chen J, Lin K. The development of collagen based composite scaffolds for bone regeneration. Bioact Mater. 2017;3(1):129-38. doi: 10.1016/j.bioactmat.2017.08.004.
Pecora G, De Leonardis D, Ibrahim N, Bovi M, Cornelini R. The use of calcium sulphate in the surgical treatment of a 'through and through' periradicular lesion. IntEndod J. 2001;34(3):189-97. doi: 10.1046/j.1365-2591.2001.00369.x.
Sánchez-Torres A, Sánchez-Garcés MÁ, Gay-Escoda C. Materials and prognostic factors of bone regeneration in periapical surgery: a systematic review. Med Oral Patol Oral Cir Bucal. 2014;19(4):e419-25. doi: 10.4317/medoral.19453.
Taschieri S, Corbella S, Tsesis I, Bortolin M, Del Fabbro M. Effect of guided tissue regeneration on the outcome of surgical endodontic treatment of through-and-through lesions: a retrospective study at 4-year follow-up. Oral Maxillofac Surg. 2011;15(3):153-9. doi: 10.1007/s10006-011-0272-y.
von Arx T. Apical surgery: A review of current techniques and outcome. Saudi Dent J. 2011;23(1):9–15. doi:10.1016/j.sdentj.2010.10.004.
Rood JP, NooraldeenShehab BAA. The radiological prediction of inferior alveolar nerve injury during third molar surgery. Br J Oral Maxillofac Surg. 1990;28(1):20-5. doi: 10.1016/0266-4356(90)90005-6.
von Arx T, Cochran DL. Rationale for the application of the GTR principle using a barrier membrane in endodontic surgery: a proposal of classification and literature review. Int J Periodontics Restorative Dent. 2001 Apr;21(2):127-39.
Dietrich T, Zunker P, Dietrich D, Bernimoulin JP. Apicomarginal defects in periradicular surgery: classification and diagnostic aspects. Oral Surg Oral Med Oral Pathol Oral RadiolEndod. 2002;94(2):233-9. doi: 10.1067/moe.2002.123864.
von Arx T, Alsaeed M. The use of regenerative techniques in apical surgery: A literature review. Saudi Dent J. 2011;23(3):113-27. doi: 10.1016/j.sdentj.2011.02.004.
Soujanya E, Swathi A, Ananad S, Raju A. Endodontic microsurgery: An overview. Dent Med Res. 2015;3(2):31–7. doi:10.4103/2348- 1471.159172
Wang J, Yao QY, Zhu HY. Efficacy of bone grafts in jaw cystic lesions: A systematic review. World J Clin Cases. 2022;10(9):2801-10. doi: 10.12998/wjcc.v10.i9.2801
Lin L, Chen MY, Ricucci D, Rosenberg PA. Guided tissue regeneration in periapical surgery. J Endod. 2010;36(4):618-25. doi: 10.1016/j.joen.2009.12.012.
Kumar V, Abbas AK, Aster J, Fausto N. Robbins and Cotran pathologic basis of disease. 8th edition.Philadelphia, PA: Saunders; 2009.
Lin LM, Rosenberg PA. Repair and regeneration in endodontics. IntEndod J. 2011;44(10):889-906. doi: 10.1111/j.1365-2591.2011.01915.x.
Ono T, Nakashima T. Oral bone biology. J Oral Biosci. 2022;64(1):8-17. doi: 10.1016/j.job.2022.01.008.
El-Ghannam A, Amin H, Nasr T, Shama A. Enhancement of bone regeneration and graft material resorption using surface-modified bioactive glass in cortical and human maxillary cystic bone defects. Int J OralMaxillofac Implants. 2004;19(2):184-91.
IhanHren N, Miljavec M. Spontaneous bone healing of the large bone defects in the mandible. IntJ Oral Maxillofac Surg. 2008;37(12):1111-6. doi: 10.1016/j.ijom.2008.07.008.
PerićKačarević Ž, Rider P, Alkildani S, Retnasingh S, Pejakić M, Schnettler R, et al. An introduction to bone tissue engineering. Int J Artif Organs. 2020;43(2):69-86. doi: 10.1177/0391398819876286.
Alonzo M, Primo FA, Kumar SA, Mudloff JA, Dominguez E, Fregoso G, et al. Bone tissue engineering techniques, advances and scaffolds for treatment of bone defects. CurrOpin Biomed Eng. 2021;17:100248. doi: 10.1016/j.cobme.2020.100248.
Zhang M, Lin R, Wang X, Xue J, Deng C, Feng C, et al. 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration. Sci Adv. 2020;6(12):eaaz6725.doi: 10.1126/sciadv.aaz6725.
Karring T, Lindhe J, Cortellini P. Regenerative periodontal therapy. In: Lindhe J, Karring T, Lang NP, editors. Clinical Periodontology and Implant Dentistry. 4thed. Oxford, UK: Blackwell Munksgaard; 2003. pp. 650–704.
Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363-408. doi: 10.1615/critrevbiomedeng.v40.i5.10.
Persikov AV, Ramshaw JA, Kirkpatrick A, Brodsky B. Electrostatic interactions involving lysine make major contributions to collagen triple-helix stability. Biochemistry. 2005;44(5):1414-22. doi: 10.1021/bi048216r.
Fallas JA, Gauba V, Hartgerink JD. Solution structure of an ABC collagen heterotrimer reveals a single-register helix stabilized by electrostatic interactions. J Biol Chem. 2009;284(39):26851-9. doi: 10.1074/jbc.M109.014753.
Ma C, Wang H, Chi Y, Wang Y, Jiang L, Xu N, et al. Preparation of oriented collagen fiber scaffolds and its application in bone tissue engineering. Appl Mater Today. 2021;22:100902.doi: 10.1016/j.apmt.2020.100902.
Heino J. The collagen family members as cell adhesion proteins. Bioessays. 2007;29(10):1001-10. doi: 10.1002/bies.20636..
Wolf K, Alexander S, Schacht V, Coussens LM, von Andrian UH, van Rheenen J, Deryugina E, Friedl P. Collagen-based cell migration models in vitro and in vivo. Semin Cell Dev Biol. 2009;20(8):931-41. doi: 10.1016/j.semcdb.2009.08.005.
Provenzano PP, Eliceiri KW, Inman DR, Keely PJ. Engineering three-dimensional collagen matrices to provide contact guidance during 3D cell migration.CurrProtoc Cell Biol. 2010;Chapter 10:Unit 10.17. doi: 10.1002/0471143030.cb1017s47.
Tsai KS, Kao SY, Wang CY, Wang YJ, Wang JP, Hung SC. Type I collagen promotes proliferation and osteogenesis of human mesenchymal stem cells via activation of ERK and Akt pathways. J Biomed Mater Res A. 2010;94(3):673-82.doi: 10.1002/jbm.a.32693.
Gallo N, Natali ML, Sannino A, Salvatore L. An overview of the use of equine collagen as emerging material for biomedical applications. J FunctBiomater. 2020;11(4):79. doi: 10.3390/jfb11040079.
Kumar S. Local hemostatic agents in the management of bleeding in oral surgery. Asian J Pharm Clin Res. 2016;9(3):35-41.
Zirk M, Fienitz T, Edel R, Kreppel M, Dreiseidler T, Rothamel D. Prevention of post-operative bleeding in hemostatic compromised patients using native porcine collagen fleeces-retrospective study of a consecutive case series. Oral Maxillofac Surg. 2016;20(3):249-54. doi: 10.1007/s10006-016-0560-7.
Cherim M, Mustafa A, Cadar E, Lupașcu N, Paris S, Sirbu R. Collagen sources and areas of use. Eur J Med Nat Sci. 2019;2(2):8-13.
Park JB. Effects of fibroblast growth factor 2 on osteoblastic proliferation and differentiation by regulating bone morphogenetic protein receptor expression. J Craniofac Surg. 2011;22(5):1880-2. doi: 10.1097/SCS.0b013e31822e8434.
Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. J NanosciNanotechnol. 2014;14(1):15-56. doi: 10.1166/jnn.2014.9127.
D'Amico E, Pierfelice TV, Lepore S, IezziG, D'Arcangelo C, Piattelli A, et al. Hemostatic collagen sponge with high porosity promotes the proliferation and adhesion of fibroblasts and osteoblasts. Int J Mol Sci. 2023;24(9):7749. doi: 10.3390/ijms24097749.
Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev. 2013;19(6):485-502. doi: 10.1089/ten.TEB.2012.0437.
Janik H, Marzec M. A review: fabrication of porous polyurethane scaffolds. Mater SciEng C Mater Biol Appl. 2015;48:586-91. doi: 10.1016/j.msec.2014.12.037.
Santos Tde S, Abuna RP, Almeida AL, Beloti MM, Rosa AL. Effect of collagen sponge and fibrin glue on bone repair. J Appl Oral Sci. 2015;23(6):623-8. doi: 10.1590/1678-775720150374.
Anderud J, Lennholm C, Wälivaara DÅ. Ridge preservation using Collacone compared with an empty socket: a pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021;132(2):e55-e61.doi: 10.1016/j.oooo.2021.01.012.
Schnutenhaus S, Doering I, Dreyhaupt J, Rudolph H, Luthardt RG. Alveolar ridge preservation with a collagen material: a randomized controlled trial. J Periodontal Implant Sci. 2018;48(4):236-50. doi: 10.5051/jpis.2018.48.4.236.
Lin HC, Chen CM, Tung CL. Postextraction ridge preservation using an artificial collagen sponge for implant site development: A case report. Taiwan J Oral Med Sci. 2015;30(1):68-73.
Berberi A, Nader N, BouAssaf R, Fayyad-Kazan H, Khairalah S, Moukarzel N. Sinus floor augmentation with ambient blood and an absorbable collagen sponge: A prospective pilot clinical study. Implant Dent. 2017;26(5):674-81. doi: 10.1097/ID.0000000000000631.
Menassa G, Kassir AR, Landi L, Naaman NBA, Chakar C. Implant placement with sinus floor elevation via the lateral approach using only absorbable collagen sponge: 12-month post-loading radiographical outcomes and implant survival rate. Oral Maxillofac Surg. 2021;25(2):231-6. doi: 10.1007/s10006-020-00908-w.
Binlateh T, Thammanichanon P, Rittipakorn P, Thinsathid N, Jitprasertwong P. Collagen-based biomaterials in periodontal regeneration: current applications and future perspectives of plant-based collagen. Biomimetics (Basel). 2022;7(2):34. doi: 10.3390/biomimetics7020034.
Liu TJ, Zhou JN, Guo LH. Impact of different regenerative techniques and materials on the healing outcome of endodontic surgery: a systematic review and meta-analysis. IntEndod J. 2021;54(4):536-555. doi: 10.1111/iej.13440.
Corbella S, Taschieri S, Elkabbany A, Del Fabbro M, von Arx T. Guided tissue regeneration using a barrier membrane in endodontic surgery. Swiss Dent J. 2016;126(1):13-25. doi: 10.61872/sdj-2016-01-140.
Parmar PD, Dhamija R, Tewari S, Sangwan P, Gupta A, Duhan J, Mittal S. 2D and 3D radiographic outcome assessment of the effect of guided tissue regeneration using resorbable collagen membrane in the healing of through-and-through periapical lesions - a randomized controlled trial. IntEndod J. 2019;52(7):935-948. doi: 10.1111/iej.13098.
Chi CS, Andrade DB, Kim SG, Solomon CS. Guided tissue regeneration in endodontic surgery by using a bioactive resorbable membrane. J Endod. 2015;41(4):559-62. doi: 10.1016/j.joen.2014.10.018.
Dahlin C, Linde A, Gottlow J, Nyman S. Healing of bone defects by guided tissue regeneration. PlastReconstrSurg 1988;81(5):672–6.doi: 10.1097/00006534-198805000-00004.
Cury PR, Furuse C, Martins MT, Sallum EA, De Araújo NS. Root resorption and ankylosis associated with guided tissue regeneration. J Am Dent Assoc. 2005;136(3):337-41. doi: 10.14219/jada.archive.2005.0174.
LiY, Liu Y, Li R, Bai H, Zhu Z, Zhu L, et al. Collagen-based biomaterials for bone tissue engineering. Mater Des.2021;210:110049.doi: 10.1016/j.matdes.2021.110049.
Rico-Llanos GA, Borrego-González S, Moncayo-Donoso M, Becerra J, Visser R. Collagen Type I Biomaterials as Scaffolds for Bone Tissue Engineering. Polymers (Basel). 2021;13(4):599. doi: 10.3390/polym13040599.
Gurumurthy B, Janorkar AV. Improvements in mechanical properties of collagen-based scaffolds for tissue engineering. CurrOpin Biomed Eng. 2020;17:100253. doi: 10.1016/j.cobme.2020.100253.
Matsuno T, Nakamura T, Kuremoto K, Notazawa S, Nakahara T, Hashimoto Y, et al. Development of beta-tricalcium phosphate/collagen sponge composite for bone regeneration. Dent Mater J. 2006;25(1):138-44. doi: 10.4012/dmj.25.138.
Natto ZS, Parashis A, Steffensen B, Ganguly R, Finkelman MD, Jeong YN. Efficacy of collagen matrix seal and collagen sponge on ridge preservation in combination with bone allograft: A randomized controlled clinical trial. J ClinPeriodontol. 2017;44(6):649-59. doi: 10.1111/jcpe.12722.
Ozawa Y, Kubota T, Yamamoto T, Tsukune N, Koshi R, Nishida T, et al. Comparison of the bone augmentation ability of absorbable collagen sponge with that of hydroxyapatite/collagen composite. J Oral Sci. 2018;60(4):514-8.doi: 10.2334/josnusd.17-0465.
Briquez PS, Tsai HM, Watkins EA, Hubbell JA. Engineered bridge protein with dual affinity for bone morphogenetic protein-2 and collagen enhances bone regeneration for spinal fusion. Sci Adv. 2021;7(24):eabh4302.doi: 10.1126/sciadv.abh4302.
Bergenholtz G, Wikesjö UM, Sorensen RG, Xiropaidis A, Wozney JM. Observations on healing following endodontic surgery in nonhuman primates (Macacafascicularis): effects of rhBMP-2. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2006;101(1):116–25.doi: 10.1016/j.tripleo.2005.02.085.