CASE REPORTS

MERCURY SELF-POISONING. CASE REPORT

Marieta Yovcheva¹, Petko Marinov¹, Snezha Zlateva¹, Georgi Bonchev², Ivaylo Vazharov³

¹Clinic for Intensive Treatment of Acute Intoxications and Toxicoallergies, Naval Hospital – Varna, Military Medical Academy
²Laboratory of Analytical Toxicology, Naval Hospital – Varna, Military Medical Academy
³Clinic of Internal diseases, Naval Hospital – Varna, Military Medical Academy

ABSTRACT

A clinical case of a self-poisoning with a single ingestion of 40-45 mL of alleged metal mercury with suicidal purpose by a 50-year-old man is described. On the following day he was admitted to the Toxicology Clinic with symptoms of nausea, strong abdominal colic, diarrhea, and feces with macroscopic admixture of mercury drops. At the inspection of the residue of the substance, an unusual black-grey color on its surface was noted. Later, mercurous oxide was proven by chemical analysis. No toxic symptoms of the central nervous system, respiratory system or kidneys were observed. X-rays of the abdomen were performed and tracked dynamically: the first one showed numerous round shadows with metal density along the whole colon, the second - after 5 days - showed reduced number of similar shadows only in the distant colon, and the third X-ray on the 9th day was normal. Mercury was discovered in the blood: 0.250 µmol L⁻¹ on the fourth day after the ingestion and 0.120 µmol L⁻¹ on the tenth day. Some therapeutic problems of acute mercury intoxication of present interest are discussed.

Keywords: mercury metal, inorganic mercury compounds, mercurous oxide, ingestion, gastrointestinal syndrome

INTRODUCTION

Mercury poisoning has been well known for a long time. Mercury is a heavy silvery-white metal, liquid at room temperature. It is a cell and protoplasmic toxicant that binds the sulfhydryl groups of proteins and leads to protein precipitation, damage of the cell membranes, reduction of RNA in the cells and blockage of a number of important enzyme systems (1-5). It is toxic in all forms: metal mercury, inorganic and organic mercury compounds (2,5-7). The sources of poisoning, toxicokinetics and biological effects vary significantly depending on these forms; therefore, the mercury toxicity is also highly varied (2,3,7-10). The main factors for this variety are chemical form, route of exposure (ingestion, inhalation and dermal), duration of exposure (acute or chronic), and the dose and intensity of the exposure (2,10). Metal mercury is dangerous mainly through inhalation, while its ingestion is considered relatively safe (4,10-12). In toxicological literature the opinion that metal mercury is not absorbed by the gastrointestinal tract with intact membranes and has insignificant absorption – less than 0.1% of the ingested amount – prevails. Some cases of ingestion of significant amounts of metal mercury with suicidal purpose – from 204 g to 3.0 kg (220 mL) without substantial toxic effects – have been described (5,6,9,11,13-15). The authors emphasize on the importance of the normal peristalsis of the bowels and the intact intestinal membranes (10,16). Inorganic mercury compounds are mercu-
rous salts (monovalent) and mercuric salts (bivalent). They enter the blood circulation only by ingestion. They are lipid insoluble, have various degrees of water solubility and do not pass through the hematoencephalic barrier. At first, the soluble mercuric salts are absorbed moderately (7-15%) and a significant part of Hg^{2+} can stay unabsorbed, attached to the alimentary mucosa or in the intestinal content, waiting for absorption later. Mercurous salts are not soluble at first, have restricted absorption, but they can undergo oxidation to soluble compounds (2,7,10). Inorganic mercury compounds have an irritating-corrosive effect on the mucosa of the gastro-intestinal tract and especially on the intestines. After the absorption, they accumulate mainly in the liver and kidneys. In the early phase, the mercury in the blood is about 1-1.5% of the ingested dose. Over 90% of the inorganic mercury in the blood is bound to the erythrocytes and proteins and less than 1% is unbound. Its volume of distribution is approximately 20 L/kg$^{-1}$. It is eliminated mainly via the kidneys by glomerular filtration and tubular secretion and also via biliary excretion, with the feces. The third form, organic mercury compounds, is highly liposoluble, pass through the hematoencephalic barrier and cause a severe cerebral toxic syndrome (5,9,17,18). Organic mercury compounds are not a subject of this article, but their impact on human health continues to be an international problem (4,5,9,13,17-20).

We describe a clinical case of a single-time ingestion of a significant amount of initially reported pure metal mercury, about 40-45 ml, with suicidal purpose, by a 50-year-old man who was in good health before that. The diagnosis was formed on the basis of the history, clinical toxic syndrome, the residue of the substance in the vial, the toxicology laboratory results and X-ray images.

RESULTS

Anamnness

R.Y.M., a man, 50 years old, from the village of G., Varna District, was admitted to the Toxicology Clinic on 31.08.2016 with a history of strong abdominal cramps, nausea and diarrhea with admixture of blood which started about 24 hours after a single ingestion of alleged metal mercury, with suicidal purpose. The patient said that the mercury had been taken many years ago from a nowadays non-existing department of the Polyvinylchloride Production Plant in the town of Devnya and was kept in a well-sealed 50 mL glass vial. Before the intoxication, the patient was in good health. Physical examination: conscious, oriented, tense, with dysthymia. No ataxia, convulsions or negative neurological symptoms, normal muscle tonus. There were normal color and turgor of the skin and oral mucosa. The respiratory rate was 24 per minute. The examination also showed: vesicular breathing, no wheezing; bradycardia 45/min, rhythmic; later 65/min. The arterial blood pressure was normal. The abdomen was soft with painful palpation in the lower abdominal half, along the colon. There were no symptoms of peritoneal irritation; no organomegaly and non-painful renal succussion.

Diagnostics

Macroscopic inspection of the original vial (Fig. 1) has shown approximately 1 mL of liquid, visibly non-clean mercury (Fig. 2). Several milligrams of fine black powder were found as a residue in the vial.

Fig. 1. The original vial
Mercury Self-Poisoning. Case Report

(Fig. 3). Classical wet chemistry semi-micro qualitative analysis has proven mercury (I) oxide as its principal component. Toxicological chemical analysis of blood for mercury was performed: 03.09.2016 (4th day after ingestion) – 0.2500 µmol L⁻¹; 08.09.2016 (10th day) – 0.1200 µmol L⁻¹. The results were received after the discharge of the patient from the hospital.

Routine laboratory tests showed results within normal ranges. The ECG data were: on admittance – sinus bradycardia 44/min, indifferent cardiac position. Control ECG-s showed sinus rhythm. The X-ray of the lungs and heart was normal. The X-ray of the abdomen showed the following: on 31.08.2016 –

![Liquid mercury leftover](image1)

![Black powder found together with mercury in the original bottle](image2)

![X-ray on 31.08.2016: numerous X-positive round shadows with metal density along the colon – “mercury necklace”](image3)

![X-ray on 04.09.2016: reduced number of positive shadows along the descendant colon](image4)
numerous X-positive round shadows with metal density along the colon (Fig. 4); on 04.09.2016 – reduced number of similar shadows along the descendant colon (Fig. 5); and on 07.09.2017 – normal image of the abdomen, no pathologic shadows.

The ultrasound diagnostic of the abdomen showed a blurred boundary between renal cortex and pyelonephritis of both kidneys. The ultrasound image of the other abdominal organs was normal. Fibrogastroscopy and fibrocolonoscopy were planned, but refused by the patient. A consultation with a surgeon determined that there were no symptoms of an acute abdominal surgical problem. A consultation with a psychiatrist lead to the diagnosis - disorder of adaptation. There was a protracted depressive reaction and a suicide attempt. The patient was directed to the Psychiatric Department of the St. Marina University Hospital in Varna, but declined to be admitted there.

Treatment

We have performed stomach lavage, bowel irrigation and used osmotic laxative repeatedly, intravenous infusion of electrolyte and glucous solutions, H2-blocker – Quamatel (famotidin) IV, inhibitor of the proton pump – Ulcoprol (omeprazol), spasmylytics, analgesics, antibiotic – Ceftriaxon IV, and included a diet as well. Antidote treatment was delayed due to deficit of Dimercaprol.

Clinical course: during the first week the patient suffered from constant abdominal pain, mainly cramps along the colon, with temporary effect of spasmolytics. After the 6th day, the intensity of the abdominal symptoms was reduced. Until the 5-6th day, mercury particles could be macroscopically seen in the feces. On the 9th day the patient was better, without cramps or diarrhea and was discharged on his own will, with prescription and dietetic advice. Three days later, he phoned about renewed appearance of abdominal cramps and diarrhea, possibly with blood admixture, without any laxatives. He was admitted to the Gastroenterology Department of another hospital for diagnostic gastroscopy and colonoscopy, but once again refused these procedures and left on his own will. He did not return to the Toxicology Department of the Naval Hospital for re-admittance either and missed all the dates for control examination. Several months later, on the telephone, his relatives declared that he had refused any medical help but was “well”.

DISCUSSION

The described clinical case created several diagnostic and therapeutic problems from the beginning. Although we had a clear history of ingestion of a significant amount of pure metal mercury, confirmed by the X-ray of the abdomen, the clinical presentation with severe gastroenterocolitis and later, the high mercury blood levels found, were in contradiction with the expected lack of absorption, none or minimal local effects and lack of serious toxicity of the ingested metal mercury. It resembled inorganic mercury oral intoxication. When the vial was brought, the macroscopic inspection showed visible residue – fine grayish-black powder. Classical wet chemistry semi-micro qualitative analysis proved mercury (I) oxide as its principal component. According to the literature, the metal mercury may oxidize to mercury oxide in nature when there is moist air, forming a film of Hg₂O, but it is a very slow process (20). Later, the presence of Hg₂O as impurity in liquid mercury has found its reasonable explanation, as the industrial origin (electrochemical application) of this specific sample has been confirmed. The mercury poisoning in this case was with mixed mercury forms: inorganic compound and metal mercury, with prevailing inorganic mercury toxic syndrome. The mercury blood level was higher than expected. Additional route of exposure – inhalation of metal mercury vapours before the oral ingestion was discussed, but the patient denied such possibility and no central nervous or respiratory toxic symptoms were observed. The following differential diagnoses were discussed: (i) Ingestion of metal mercury, contaminated by inorganic mercury compound/s; (ii) Ingestion of pure metal mercury by a patient with pre-existing disease of the gastrointestinal tract with loss of intact intestinal mucosa; (iii) Combination of metal mercury ingestion and inhalation of mercury vapours and (iv) Combined intoxication by unknown toxin with gastrointestinal disturbing effects and ingestion of metal mercury. Treatment was mainly depuration and symptomatic at first. The existing deficit of antidotes for heavy metal intoxications has delayed antidote treatment. Additional obstacle was created by the negative attitude of the patient to some
diagnostic and therapeutic procedures. The possible delayed toxic gastrointestinal and kidney symptoms in this case could not be followed and treated properly because of his refusal of control examinations.

CONCLUSION

Although mercury intoxication, especially with suicidal purpose, is rare in Bulgaria, this case showed that some amounts of industrial mercury can be kept for years and used with significant toxic effects. The mercury poisoning in this case was mixed – with two different mercury forms: inorganic compound (Hg₂O) and metal mercury, with leading clinical presentation of Hg₂O toxic syndrome. Chemical examination played a very important role for the right diagnosis because of the high toxicity of the inorganic compound. The described case was a diagnostic challenge at the admittance of the patient and confirmed the necessity of strict verification of the form of mercury in mercury poisonings, based on the history, clinical toxic syndromes and toxicological chemical analysis.

REFERENCES

3. Benson B. Heavy metals (Pb, As, Hg). San Francisco: Scribd.; c.2017 [cited 2017 Apr 06]. [Internet]