Introduction: Aerosol vaccination is a promising non-injectable method that provides immune resistance to pathogens since it follows the natural route of transmission of many infectious agents. The immune response, occurring after intranasal or respiratory vaccine administration, provides credible protection due to the common mucosal immune system, excellent blood supply, and lung permeability.
Aim: The study aims to highlight the unconventional and perspective application use of aerosol dosage forms as a technological approach for vaccine drug delivery.
Materials and Methods: A detailed literature survey in scientific databases such as PubMed, ScienceDirect, ResearchGate has been conducted, and the relevant information has been summarized and interpreted.
Results: The aerosol vaccination method, as an alternative to the subcutaneous, intramuscular or intradermal application route, ensures defense against the inhaled pathogens, avoiding at the same time drawbacks associated with the injection administration such as the risk of reuse of disposable medical consumables, potential spreading of blood-borne diseases and the necessity of qualified medical personnel. Additionally, aerosol vaccination is an easier and more practical approach for patients, leading to improved compliance. Vaccines applied by the inhalation or nasal route of administration could be a successful approach for the treatment of diseases such as measles, tuberculosis, or influenza A, that although preventable, remain a global challenge.
Conclusion: The aerosol method is promising for vaccine delivery with the potential to be fully evaluated in the upcoming years.
Zhang L, Wang W, Wang S. Effect of vaccine administration modality on immunogenicity and efficacy. Expert Rev Vaccines. 2015;14(11):1509–23. doi:10.1586/14760584.2015.1081067.
Brokstad KA, Eriksson JC, Cox RJ, Tynning T, Olofsson J, Jonsson R, et al. Parenteral vaccination against influenza does not induce a local antigen-specific immune response in the nasal mucosa. J Infect Dis. 2002;185(7):878–84. doi: 10.1086/339710.
Gupta E, Bajpai M, Sharma P, Shah A, Sarin S. Unsafe injection practices: A potential weapon for the outbreak of blood borne viruses in the community. Ann Med Health Sci Res. 2013;3(2):177. doi:10.4103/2141-9248.113657.
Garg N, Aggarwal A. Advances towards painless vaccination and newer modes of vaccine delivery. Indian J Pediatr. 2017;85(2):132–8. doi:10.1007/s12098-017-2377-2.
Rashid A, Rasheed K, Asim M, Hussain A. Risks of vaccination: a review. J Venom Anim Toxins. 2009;15(1). doi:10.1590/s1678-91992009000100003.
Roth Y, Chapnik JS, Cole P. Feasibility of aerosol vaccination in humans. Ann Oto, Rhinol Laryngol. 2003;112(3):264–70. doi:10.1177/000348940311200313.
Partidos CD. Intranasal vaccines: forthcoming challenges. Pharmaceut Sci Techn Today. 2000;3(8):273–81. doi:10.1016/s1461-5347(00)00281-9.
Sepúlveda-Amor J, Valdespino-Gómez JL, Garcı́a-Garcı́a M de L, Bennett J, Islas-Romero R, Echaniz-Aviles G, et al. A randomized trial demonstrating successful boosting responses following simultaneous aerosols of measles and rubella (MR) vaccines in school age children. Vaccine. 2002;20(21-22):2790–5. doi:10.1016/s0264-410x(02)00179-2.
McCormick AA, Shakeel A, Yi C, Kaur H, Mansour AM, Bakshi CS. Intranasal administration of a two-dose adjuvanted multi-antigen TMV-subunit conjugate vaccine fully protects mice against Francisella tularensis LVS challenge. Murthy AK, editor. PLos One. 2018;13(4):e0194614. doi:10.1371/journal.pone.0194614.
Dilraj A, Cutts FT, Bennett JV, de Castro JF, Cohen B, Coovadia HM. Persistence of measles antibody two years after revaccination by aerosol or subcutaneous routes. Pediatr. Infect. Dis. J. 2000;19(12):1211–3. doi:10.1097/00006454-200012000-00021.
Huang J, Mikszta JA, Ferriter MS, Jiang G, Harvey NG, Dyas B, et al. Intranasal administration of dry powder anthrax vaccine provides protection against lethal aerosol spore challenge. Hum. Vaccin. 2007;3(3):90–3. doi:10.4161/hv.3.3.4011.
Rappuoli R. Changing route: aerosol vaccine against tuberculosis. Lancet Infect Dis. 2014;14(10):901–2. doi:10.1016/s1473-3099(14)70886-2.
Smith DJ, Bot S, Dellamary L, Bot A. Evaluation of novel aerosol formulations designed for mucosal vaccination against influenza virus. Vaccine. 2003;21(21-22):2805–12. doi:10.1016/s0264-410x(03)00224-x.
Colbeck I, Lazaridis M. Aerosols and environmental pollution. Naturwissenschaften.2009;97(2):117–31. doi:10.1007/s00114-009-0594-x.
Lee I-S, Kim HJ, Lee DH, Hwang GB, Jung JH, Lee M, et al. Aerosol particle size distribution and genetic characteristics of aerosolized influenza A H1N1 virus vaccine particles. Aerosol Air Qual Res. 2011;11(3):230–7. doi:10.4209/aaqr.2010.12.0105.
Garcia-Contreras L, Wong Y-L, Muttil P, Padilla D, Sadoff J, DeRousse J, et al. Immunization by a bacterial aerosol. Proc Natl Acad Sci. 2008;105(12):4656–60. doi:10.1073/pnas.0800043105.
Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56(6):588–99. doi:10.1046/j.1365-2125.2003.01892.x.
Davis SS. Nasal vaccines. Adv Drug Deliv Rev. 2001;51(1-3):21–42. doi:10.1016/s0169-409x(01)00162-4.
Yusuf H, Kett V. Current prospects and future challenges for nasal vaccine delivery. Hum Vaccin. 2016;13(1):34–45. doi:10.1080/21645515.2016.1239668.
MacDonald TT. The mucosal immune system. Parasite Immunol. 2003;25(5):235–46. doi:10.1046/j.1365-3024.2003.00632.x.
Dellamary, L.A., Tarara, T.E., Smith, D.J. et al. Hollow porous particles in metered dose inhalers. Pharm Res. 2000;(17)168–174 doi:10.1023/A:1007513213292.
Scichilone N, Spatafora, Battaglia, Arrigo, Benfante, Bellia V. Lung penetration and patient adherence considerations in the management of asthma: role of extra-fine formulations. J Asthma Allergy. 2013;41. doi:10.2147/jaa.s44293.
Mutsch M, Zhou W, Rhodes P, Bopp M, Chen RT, Linder T, Spyr C, Steffen R. Use of the Inactivated Intranasal Influenza Vaccine and the Risk of Bell’s Palsy in Switzerland. N Engl J Med. 2004; 26;350(9):896-903. doi:10.1056/NEJMoa030595.
Costa A, Pinheiro M, Magalhães J, Ribeiro R, Seabra V, Reis S, et al. The formulation of nanomedicines for treating tuberculosis. Adv Drug Deliv Rev. 2016;102:102–15. doi:10.1016/j.addr.2016.04.012.
Bennett, Fernandez de Castro J, Valdespino-Gomez JL, Garcia-Garcia Mde L, Islas-Romero R, Echaniz-Aviles G et al. Aerosolized measles and measles-rubella vaccines induce better measles antibody booster responses than injected vaccines: randomized trials in Mexican schoolchildren. Bull World Health Organ. 2002; 80(10):806-12.
Lu D, Hickey AJ. Pulmonary vaccine delivery. Exp Rev Vaccines.2007;6(2):213–26. doi:10.1586/14760584.6.2.213.
Wong Y-L, Sampson S, Germishuizen WA, Goonesekera S, Caponetti G, Sadoff J, et al. Drying a tuberculosis vaccine without freezing. Proc Natl Acad Sci. 2007;104(8):2591–5. doi:10.1073/pnas.0611430104.
De Boer AH, Hagedoorn P, Hoppentocht M, Buttini F, Grasmeijer F, Frijlink HW. Dry powder inhalation: past, present and future. Expert Opin Drug Del [Internet].2016;14(4):499–512. doi:10.1080/17425247.2016.1224846.
Karimi K, Pallagi E, Szabó-Révész P, Csóka I, Ambrus R. Development of a microparticle-based dry powder inhalation formulation of ciprofloxacin hydrochloride applying the quality by design approach. Drug Des Dev Ther. 2016;(10):3331–43. doi:10.2147/dddt.s116443.
Simon A, Amaro MI, Cabral LM, Healy AM, de Sousa VP. Development of a novel dry powder inhalation formulation for the delivery of rivastigmine hydrogen tartrate. Int J Pharm. 2016;501(1-2):124–38. doi:10.1016/j.ijpharm.2016.01.066.
Griffin DE. Measles virus-induced suppression of immune responses. Immunol. Rev. 2010;236(1):176–89. doi:10.1111/j.1600-065x.2010.00925.x 236, 176–189.
Kaufmann SHE. Tuberculosis vaccine development at a divide. Curr Opin Pulm Med 2014; (20): 294–300. doi: 10.1097/mcp.0000000000000041.
Carter NJ, Curran MP. Live Attenuated Influenza Vaccine (FluMist®; Fluenz™). Drugs. 2011;71(12):1591–622. doi:10.2165/11206860-000000000-00000.
Gaur R, Gupta PK, Banerjea AC, Singh Y. Effect of nasal immunization with protective antigen of Bacillus anthracis on protective immune response against anthrax toxin. Vaccine. 2002 ;20(21-22):2836–9. doi:10.1016/s0264-410x(02)00207-4.
Meyer M, Garron T, Lubaki NM, Mire CE, Fenton KA, Klages C, et al. Aerosolized Ebola vaccine protects primates and elicits lung-resident T cell responses. J Clin Investig. 2015;13;125(8):3241–55. doi:10.1172/jci81532.
Patel MK, Gacic-Dobo M, Strebel PM, Dabbagh A, Mulders MN, Okwo-Bele J-M, et al. Progress Toward Regional Measles Elimination — Worldwide, 2000–2015. MMWR Morb Mortal Wkly Rep. 2016;65(44):1228–33. doi:10.15585/mmwr.mm6544a6.
Henao-Restrepo AM, Greco M, Laurie X, John O, Aguado T. Measles Aerosol Vaccine Project. Procedia Vaccinol. 2010;2(2):147–50. doi:10.1016/j.provac.2010.07.007.
Manjaly Thomas ZR, McShane H. Aerosol immunisation for TB: matching route of vaccination to route of infection. Trans R Soc Trop Med Hyg. 2015 Mar;109(3):175-81. doi: 10.1093/trstmh/tru206.
Chen L, Wang J, Zganiacz A, Xing Z. Single intranasal mucosal Mycobacterium bovis BCG vaccination confers improved protection compared to subcutaneous vaccination against pulmonary tuberculosis. Infect Immun. 2004;72(1):238–46. doi:10.1128/iai.72.1.238-246.2004.
Satti I, Meyer J, Harris SA, Thomas Z-RM, Griffiths K, Antrobus RD, et al. Safety and immunogenicity of a candidate tuberculosis vaccine MVA85A delivered by aerosol in BCG-vaccinated healthy adults: a phase 1, double-blind, randomised controlled trial. Lancet Infect Dis. 2014;14(10):939–46. doi:10.1016/s1473-3099(14)70845-x.
Cybulski RJ, Sanz P, O’Brien AD. Anthrax vaccination strategies. Mol Aspects Med.2009;30(6):490–502. doi:10.1016/j.mam.2009.08.006.
Wimer-Mackin S, Hinchcliffe M, Petrie CR, Warwood SJ, Tino WT, Williams MS, et al. An intranasal vaccine targeting both the Bacillus anthracis toxin and bacterium provides protection against aerosol spore challenge in rabbits. Vaccine. 2006;24(18):3953–63. doi:10.1016/j.vaccine.2006.02.024.
Medical News Today [Internet]. Yella Hewings-Martin. How do SARS and MERS compare with COVID-19? [updated 2020 Apr 10] Available from: https://www.medicalnewstoday.com/articles/how-do-sars-and-mers-compare-with-covid-19
World Health Organization (WHO) [Internet]. Coronavirus diseases (COVID-19). Situation report – 106. [updated 2020 May 5]. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200505covid-19-sitrep-106.pdf?sfvrsn=47090f63_2
Georgiev K, Kirilov B, Georgieva M. Pharmacological features of drugs with potential activity against COVID-19. Sci Pulmonol. 2020; 1(54) (In press). (in Bulgarian).
Pharmaceutical Technology [Internet]. University of Waterloo to develop nasal vaccine for Covid-19. [updated 2020, Apr 17]. Available from: https://www.pharmaceutical-technology.com/news/canada-covid-19-vaccine-development/
Science Business [Internet]. University of Eastern Finland scientists are developing nasal vaccine against COVID-19. [updated 2020, Apr 21]. Available from: https://sciencebusiness.net/network-updates/university-eastern-finland-scientists-are-developing-nasal-vaccine-against-covid-19
Youtube [Internet]. Bharat Biotech working on nasal vaccine to fight COVID-19. [updated 2020, Apr 27]. Available from: https://www.youtube.com/watch?v=lNHgac-BpcU
On Drug Delivery [Internet]. Inhaled and nasal Covid-19 vaccine progress.[updated 2020, Apr 14]. Available from: https://www.ondrugdelivery.com/inhaled-and-nasal-covid-19-vaccine-progress/
Altimmune [Internet]. Single-dose intranasal COVID-19 vaccine. Available from: https://altimmune.com/adcovid/
Apeptico [Internet]. Recent news from Apeptico.[updated 2020, May 4].Available from: http://www.apeptico.com/index-home
Badieyan ZS, Aneja MK, Plank C. 360. Magnetofection: A Versatile Approach for Messenger RNA Delivery. Mol Ther. 2015;23(1):143. doi: 10.1016/S1525-0016(16)33969-7.