Lysergic acid diethylamide (LSD) is a drug known for its hallucinogenic properties especially at high doses and in recent years has been used as a pharmacological model to study the neurological substrate of psychosis, the effect of antipsychotics, and, in recent decades, the possibility of using it as a remedy for some diseases is being studied.
The purpose of this review is to analyze reference reports published in Pubmed, Web of Science, Scopus, Google Scholar, articles on preclinical and clinical studies related to LSD, history of use, pharmacokinetic properties, mechanism of action by activating serotonergic, dopaminergic, glutamate receptor systems, TAAR₁ receptors, amine receptors and effects on the rewarding brain system, pilot preclinical and clinical studies as a therapeutic model for the treatment of depression, anxiety, stress and addictions. We have considered acute psychotic dose-dependent intoxications and chronic psychosis.
Ergot of Rye - I: Introduction and History. Botany Department. University of Hawai‘i at Mānoa. Avaiable from: http://www.botany.hawaii.edu/faculty/wong/BOT135/LECT12.HTM
Nicholson P. The hights and lows of ergot 2015 (2). Available from: https://microbiologysociety.org/publication/past-issues/mind-altering-microbes/article/the-highs-and-lows-of-ergot.html
Caporael LR. Ergotism: the Satan loosed in Salem?. Science. 1976;192(4234):21-6. doi:10.1126/science.769159
Hofmann A. LSD, My Problem Child. New York, USA: McGraw-Hill; 1980.
Oram M. Prohibited or regulated? LSD psychotherapy and the United States Food and Drug Administration. Hist Psychiatry. 2016;27(3):290-306. doi:10.1177/0957154X16648822.
Leary T. Available from: https://en.wikipedia.org/wiki/Timothy_Leary
Stanislav Grof. Available from: https://bg.wikipedia.org/wiki/%D0%A1%D1%82%D0%B0%D0%BD%D0%B8%D1%81%D0%BB%D0%B0%D0%B2_%D0%93%D1%80%D0%BE%D1%84
Smith DE. The role of the Journal of Psychedelic Drugs in the evolution of psychedelic medicine. J Psychoactive Drugs. 2019;51(2):98-101. doi: 10.1080/02791072.2019.1589607.
Grunenberg Ch, Harris J. Summer of love: Psychedelic art, social crisis and counterculture in the 1960s. Liverpool University Press; 2005.
Smith DE, Raswyck GE, Davidson LD. From Hofmann to the Haight Ashbury, and into the future: the past and potential of lysergic acid diethlyamide. J Psychoactive Drugs. 2014;46(1):3-10. doi:10.1080/02791072.2014.873684.
Nichols DE, Johnson MW, Nichols CD. Psychedelics as medicines: An emerging new paradigm. Clin Pharmacol Ther. 2017;101(2):209-19. doi:10.1002/cpt.557.
Canal CE. Serotonergic psychedelics: Experimental approaches for assessing mechanisms of action. Handb Exp Pharmacol. 2018;252:227-60. doi:10.1007/164_2018_107777.
Garcia-Romeu A, Davis AK, Erowid E, Erowid F, Griffiths RR, Johnson MW. Persisting reductions in cannabis, opioid, and stimulant misuse after naturalistic psychedelic use: An online survey. Front Psychiatry. 2020;10:955. doi:10.3389/fpsyt.2019.00955159.
Dos Santos RG, Osório FL, Crippa JA, Riba J, Zuardi AW, Hallak JE. Antidepressive, anxiolytic, and antiaddictive effects of ayahuasca, psilocybin and lysergic acid diethylamide (LSD): a systematic review of clinical trials published in the last 25 years. Ther Adv Psychopharmacol. 2016;6(3):193-213. doi:10.1177/2045125316638008.
Gasser P, Holstein D, Michel Y, Doblin R, Yazar-Klosinski B, Passie T, et al. Safety and efficacy of lysergic acid diethylamide-assisted psychotherapy for anxiety associated with life-threatening diseases. J Nerv Ment Dis. 2014;202(7):513-20. Doi: 10.1097/nmd.0000000000000113.
Kyzar EJ, Nichols CD, Gainetdinov RR, Nichols DE, Kalueff AV. Psychedelic drugs in biomedicine. Trends Pharmacol Sci. 2017;38(11):992-1005. doi:10.1016/j.tips.2017.08.003.
Bogenschutz MP, Ross S. Therapeutic applications of classic hallucinogens. Curr Top Behav Neurosci. 2018;36:361-91. doi:10.1007/7854_2016_464.
Dolder PC, Schmid Y, Müller F, Borgwardt S, Liechti ME. LSD acutely impairs fear recognition and enhances emotional empathy and sociality. Neuropsychopharmacology. 2016;41(11):2638-46. doi:10.1038/npp.2016.82.
Butler M, Seynaeve M, Nicholson TR, Pick S, Kanaan RA, Lees A, et al. Psychedelic treatment of functional neurological disorder: a systematic review. Ther Adv Psychopharmacol. 2020;10:2045125320912125. doi: 10.1177/2045125320912125.
Mangini M. Treatment of alcoholism using psychedelic drugs: a review of the program of research. J Psychoactive Drugs. 1998;30(4):381-418. doi:10.1080/02791072.1998.10399714.
Johnson MW, Garcia-Romeu A, Johnson PS, Griffiths RR. An online survey of tobacco smoking cessation associated with naturalistic psychedelic use. J Psychopharmacol. 2017;31(7):841-50. doi:10.1177/0269881116684335.
Bayat M. Classic psychedelic drugs and their potential therapeutic effect. Ugeskr Laeger. 2017;179(37):V01170005.
De Gregorio D, Enns JP, Nuñez NA, Posa L, Gobbi G. d-Lysergic acid diethylamide, psilocybin, and other classic hallucinogens: Mechanism of action and potential therapeutic applications in mood disorders. Prog Brain Res. 2018;242:69-96. doi:10.1016/bs.pbr.2018.07.008.
Tófoli LF, de Araujo DB. Treating addiction: Perspectives from EEG and imaging studies on psychedelics. Int Rev Neurobiol. 2016;129:157-85. doi:10.1016/bs.irn.2016.06.005.
Rickli A, Luethi D, Reinisch J, Buchy D, Hoener MC, Liechti ME. Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacology. 2015;99:546-53. doi:10.1016/j.neuropharm.2015.08.034
Martin DA, Nichols CD. The effects of hallucinogens on gene expression. Curr Top Behav Neurosci. 2018;36:137-58. doi:10.1007/7854_2017_479.
Dakic V, Minardi Nascimento J, Costa Sartore R, Maciel RM, de Araujo DB, Ribeiro S, et al. Short term changes in the proteome of human cerebral organoids induced by 5-MeO-DMT. Sci Rep. 2017;7(1):12863. doi:10.1038/s41598-017-12779-5
Krebs TS, Johansen PØ. Lysergic acid diethylamide (LSD) for alcoholism: meta-analysis of randomized controlled trials. J Psychopharmacol. 2012;26(7):994-1002. doi:10.1177/0269881112439253.
Garcia-Romeu A, Davis AK, Erowid F, Erowid E, Griffiths RR, Johnson MW. Cessation and reduction in alcohol consumption and misuse after psychedelic use. J Psychopharmacol. 2019;33(9):1088-101. doi:10.1177/0269881119845793.
Dolder PC, Schmid Y, Steuer AE, Kraemer T, Rentsch KM, Hammann F, et al. Pharmacokinetics and pharmacodynamics of lysergic acid diethylamide in healthy subjects. Clin Pharmacokinet. 2017;56(10):1219-30. doi:10.1007/s40262-017-0513-9
Dolder PC, Schmid Y, Haschke M, Rentsch KM, Liechti ME. Pharmacokinetics and concentration-effect relationship of oral LSD in humans [published correction appears in Int J Neuropsychopharmacol. 2016 Apr 27;:]. Int J Neuropsychopharmacol. 2015;19(1):pyv072. doi:10.1093/ijnp/pyv072.
Kaelen M, Roseman L, Kahan J, Santos-Ribeiro A, Orban C, Lorenz R, et al. LSD modulates music-induced imagery via changes in parahippocampal connectivity. Eur Neuropsychopharmacol. 2016;26(7):1099-109. doi:10.1016/j.euroneuro.2016.03.018.
Carhart-Harris RL, Muthukumaraswamy S, Roseman L, Kaelen M, Droog W, Murphy K, et al. Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc Natl Acad Sci U S A. 2016;113(17):4853-8. doi:10.1073/pnas.1518377113.
Roseman L, Sereno MI, Leech R, Kaelen M, Orban C, McGonigle J, et al. LSD alters eyes-closed functional connectivity within the early visual cortex in a retinotopic fashion. Hum Brain Mapp. 2016;37(8):3031-40. doi:10.1002/hbm.23224.
Lebedev AV, Kaelen M, Lövdén M, Nilsson J, Feilding A, Nutt DJ, et al. LSD-induced entropic brain activity predicts subsequent personality change. Hum Brain Mapp. 2016;37(9):3203-13. doi:10.1002/hbm.23234.
Halberstadt AL, Chatha M, Klein AK, McCorvy JD, Meyer MR, Wagmann L, et al. Pharmacological and biotransformation studies of 1-acyl-substituted derivatives of d-lysergic acid diethylamide (LSD). Neuropharmacology. 2020;172:107856. doi:10.1016/j.neuropharm.2019.107856.
Libânio Osório Marta RF. Metabolism of lysergic acid diethylamide (LSD): an update. Drug Metab Rev. 2019;51(3):378-87. doi:10.1080/03602532.2019.1638931.
Luethi D, Hoener MC, Krähenbühl S, Liechti ME, Duthaler U. Cytochrome P450 enzymes contribute to the metabolism of LSD to nor-LSD and 2-oxo-3-hydroxy-LSD: Implications for clinical LSD use. Biochem Pharmacol. 2019;164:129-38. doi:10.1016/j.bcp.2019.04.013.
Klette KL, Anderson CJ, Poch GK, Nimrod AC, ElSohly MA. Metabolism of lysergic acid diethylamide (LSD) to 2-oxo-3-hydroxy LSD (O-H-LSD) in human liver microsomes and cryopreserved human hepatocytes. J Anal Toxicol. 2000;24(7):550-6. doi:10.1093/jat/24.7.550.
Upshall DG, Wailling DG. The determination of LSD in human plasma following oral administration. Clin Chim Acta. 1972;36(1):67-73. doi:10.1016/0009-8981(72)90159-3.
Aghajanian GK, Bing OH. Persistence of lysergic acid diethylamide in the plasma of human subjects. Clin Pharmacol Ther. 1964;5:611-4. doi:10.1002/cpt196455611.
Liechti M, Dolder P, Schmid Y. Alterations of consciousness and mystical-type experiences after acute LSD in humans. Psychopharmacology (Berl). 2017; 234(9-10):1499–510. doi: 10.1007/s00213-016-4453-0.
De Gregorio D, Comai S, Posa L, Gobbi G. d-Lysergic Acid Diethylamide (LSD) as a Model of Psychosis: Mechanism of Action and Pharmacology. Int J Mol Sci. 2016;17(11):1953. doi:10.3390/ijms17111953.
Teitler M, Leonhardt S, Appel NM, De Souza EB, Glennon RA. Receptor pharmacology of MDMA and related hallucinogens. Ann N Y Acad Sci. 1990;600:626-39. doi:10.1111/j.1749-6632.1990.tb16915.x.
Nichols DE, Frescas S, Marona-Lewicka D, Huang X, Roth BL, Gudelsky GA, et al. 1-(2,5-Dimethoxy-4-(trifluoromethyl)phenyl)-2-aminopropane: a potent serotonin 5-HT2A/2C agonist. J Med Chem. 1994;37(25):4346-51. doi:10.1021/jm00051a011.
Geyer MA, Krebs KM. Serotonin receptor involvement in an animal model of the acute effects of hallucinogens. NIDA Res Monogr. 1994. 46:124-56.
Halberstadt AL. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens. Behav Brain Res. 2015;277:99-120. doi:10.1016/j.bbr.2014.07.016.
Marek GJ, Aghajanian GK. LSD and the phenethylamine hallucinogen DOI are potent partial agonists at 5-HT2A receptors on interneurons in rat piriform cortex. J Pharmacol Exp Ther. 1996;278(3):1373-82.
Sanders-Bush E, Breeding M. Choroid plexus epithelial cells in primary culture: a model of 5HT1C receptor activation by hallucinogenic drugs. Psychopharmacology (Berl). 1991;105(3):340-6. doi: 10.1007/BF02244428.
Egan CT, Herrick-Davis K, Miller K, Glennon RA, Teitler M. Agonist activity of LSD and lisuride at cloned 5HT2A and 5HT2C receptors. Psychopharmacology (Berl). 1998;136(4):409-14. doi:10.1007/s002130050585.
López-Giménez JF, González-Maeso J. Hallucinogens and serotonin 5-HT2A receptor-mediated signaling pathways. Curr Top Behav Neurosci. 2018;36:45-73. doi:10.1007/7854_2017_478.
Kapur S, Remington G. Serotonin-dopamine interaction and its relevance to schizophrenia. Am J Psychiatry. 1996;153(4):466-76. doi:10.1176/ajp.153.4.466.
Rickli A, Moning OD, Hoener MC, Liechti ME. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur Neuropsychopharmacol. 2016;26(8):1327-37. doi:10.1016/j.euroneuro.2016.05.001.
Araújo AM, Carvalho F, Bastos Mde L, Guedes de Pinho P, Carvalho M. The hallucinogenic world of tryptamines: an updated review. Arch Toxicol. 2015;89(8):1151-73. doi:10.1007/s00204-015-1513-x.
Burt DR, Creese I, Snyder SH. Binding interactions of lysergic acid diethylamide and related agents with dopamine receptors in the brain. Mol Pharmacol. 1976;12(4):631-8.
Seeman P, Ko F, Tallerico T. Dopamine receptor contribution to the action of PCP, LSD and ketamine psychotomimetics. Mol Psychiatry. 2005;10(9):877-83. doi:10.1038/sj.mp.4001682.
Minuzzi L, Nomikos GG, Wade MR, Jensen SB, Olsen AK, Cumming P. Interaction between LSD and dopamine D2/3 binding sites in pig brain. Synapse. 2005;56(4):198-204. doi:10.1002/syn.20141.
Seeman P, Guan HC, Hirbec H. Dopamine D2High receptors stimulated by phencyclidines, lysergic acid diethylamide, salvinorin A, and modafinil. Synapse. 2009;63(8):698-704. doi: 10.1002/syn.20647.
Watts VJ, Lawler CP, Fox DR, Neve KA, Nichols DE, Mailman RB. LSD and structural analogs: pharmacological evaluation at D1 dopamine receptors. Psychopharmacology (Berl). 1995;118(4):401-9. doi:10.1007/BF02245940.
Marona-Lewicka D, Chemel BR, Nichols DE. Dopamine D4 receptor involvement in the discriminative stimulus effects in rats of LSD, but not the phenethylamine hallucinogen DOI. Psychopharmacology (Berl). 2009;203(2):265-77. doi: 10.1007/s00213-008-1238-0.
Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G, Quigley DI, et al. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol. 2001;60(6):1181-8. doi:10.1124/mol.60.6.1181.
Lindemann L, Meyer CA, Jeanneau K, Bradaia A, Ozmen L, Bluethmann H, et al. Trace amine-associated receptor 1 modulates dopaminergic activity. J Pharmacol Exp Ther. 2008;324(3):948-56. doi:10.1124/jpet.107.132647.
Xie Z, Miller GM. Trace amine-associated receptor 1 is a modulator of the dopamine transporter. J Pharmacol Exp Ther. 2007;321(1):128-36. doi:10.1124/jpet.106.117382.
Revel FG, Moreau JL, Gainetdinov RR, Bradaia A, Sotnikova TD, Mory R, et al. TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proc Natl Acad Sci U S A. 2011;108(20):8485-90. doi:10.1073/pnas.1103029108.
Grandy DK. Trace amine-associated receptor 1-Family archetype or iconoclast? Pharmacol Ther. 2007;116(3):355-90. doi:10.1016/j.pharmthera.2007.06.007.
Lindemann L, Hoener MC. A renaissance in trace amines inspired by a novel GPCR family. Trends Pharmacol Sci. 2005;26(5):274-81. doi:10.1016/j.tips.2005.03.007.
Miller GM. The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity. J Neurochem. 2011;116(2):164-76. doi:10.1111/j.1471-4159.2010.07109.x.
Narang D, Tomlinson S, Holt A, Mousseau DD, Baker GB. Trace amines and their relevance to psychiatry and neurology: A brief overview. Bull Clin Psychopharmacol. 2011;21:73–9.
Johansen PØ, Krebs TS. Psychedelics not linked to mental health problems or suicidal behavior: a population study. J Psychopharmacol. 2015;29(3):270-9. doi:10.1177/0269881114568039.
Zimmermann G, Favrod J, Trieu VH, Pomini V. The effect of cognitive behavioral treatment on the positive symptoms of schizophrenia spectrum disorders: a meta-analysis. Schizophr Res. 2005;77(1):1-9. doi:10.1016/j.schres.2005.02.018.
Kringelbach ML, Berridge KC. Towards a functional neuroanatomy of pleasure and happiness. Trends Cogn Sci. 2009;13(11):479-87. doi:10.1016/j.tics.2009.08.006.
Farde L, Nordström AL, Wiesel FA, Pauli S, Halldin C, Sedvall G. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry. 1992;49(7):538-44. doi:10.1001/archpsyc.1992.01820070032005.
Nordström AL, Farde L. Plasma prolactin and central D2 receptor occupancy in antipsychotic drug-treated patients. J Clin Psychopharmacol. 1998;18(4):305-10. doi:10.1097/00004714-199808000-00010.
Kapur S, Remington G. Serotonin-dopamine interaction and its relevance to schizophrenia. Am J Psychiatry. 1996;153(4):466-76. doi:10.1176/ajp.153.4.466.
Davis KL, Kahn RS, Ko G, Davidson M. Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry. 1991;148(11):1474-86. doi:10.1176/ajp.148.11.1474.
Berry MD. The potential of trace amines and their receptors for treating neurological and psychiatric diseases. Rev Recent Clin Trials. 2007;2(1):3-19. doi:10.2174/157488707779318107.
Sotnikova TD, Caron MG, Gainetdinov RR. Trace amine-associated receptors as emerging therapeutic targets. Mol Pharmacol. 2009;76(2):229-35. doi:10.1124/mol.109.055970.
Meltzer HY, Massey BW. The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr Opin Pharmacol. 2011;11(1):59-67. doi:10.1016/j.coph.2011.02.007.
Burchett SA, Hicks TP. The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain. Prog Neurobiol. 2006;79(5-6):223-46. doi:10.1016/j.pneurobio.2006.07.003.
De Gregorio D, Posa L, Ochoa-Sanchez R, McLaughlin R, Maione S, Comai S, et al. The hallucinogen d-lysergic diethylamide (LSD) decreases dopamine firing activity through 5-HT1A, D2 and TAAR1 receptors. Pharmacol Res. 2016;113(Pt A):81-91. doi:10.1016/j.phrs.2016.08.022.
Pehek EA, Nocjar C, Roth BL, Byrd TA, Mabrouk OS. Evidence for the preferential involvement of 5-HT2A serotonin receptors in stress- and drug-induced dopamine release in the rat medial prefrontal cortex. Neuropsychopharmacology. 2006;31(2):265-77. doi:10.1038/sj.npp.1300819.
Shah UH, González-Maeso J. Serotonin and Glutamate Interactions in Preclinical Schizophrenia Models. ACS Chem Neurosci. 2019;10(7):3068-77. doi:10.1021/acschemneuro.9b00044.
Aghajanian GK, Marek GJ. Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res Brain Res Rev. 2000;31(2-3):302-12. doi:10.1016/s0165-0173(99)00046-6.
Lambe EK, Aghajanian GK. Hallucinogen-induced UP states in the brain slice of rat prefrontal cortex: role of glutamate spillover and NR2B-NMDA receptors. Neuropsychopharmacology. 2006;31(8):1682-9. doi:10.1038/sj.npp.1300944.
Chandler DJ, Lamperski CS, Waterhouse BD. Identification and distribution of projections from monoaminergic and cholinergic nuclei to functionally differentiated subregions of prefrontal cortex. Brain Res. 2013;1522:38-58. doi:10.1016/j.brainres.2013.04.057.
Arvanov VL, Liang X, Russo A, Wang RY. LSD and DOB: interaction with 5-HT2A receptors to inhibit NMDA receptor-mediated transmission in the rat prefrontal cortex. Eur J Neurosci. 1999;11(9):3064-72. doi:10.1046/j.1460-9568.1999.00726.x.
Steketee JD. Neurotransmitter systems of the medial prefrontal cortex: potential role in sensitization to psychostimulants. Brain Res Brain Res Rev. 2003;41(2-3):203-28. doi:10.1016/s0165-0173(02)00233-3.
Rickli A, Moning OD, Hoener MC, Liechti ME. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur Neuropsychopharmacol. 2016;26(8):1327-37. doi:10.1016/j.euroneuro.2016.05.001.
Goodman N. The serotonergic system and mysticism: could LSD and the nondrug-induced mystical experience share common neural mechanisms? J Psychoactive Drugs. 2002;34(3):263-72. doi:10.1080/02791072.2002.10399962.
Dawson P, Moffatt JD. Cardiovascular toxicity of novel psychoactive drugs: lessons from the past. Prog Neuropsychopharmacol Biol Psychiatry. 2012;39(2):244-52. doi:10.1016/j.pnpbp.2012.05.003.
Schmid Y, Enzler F, Gasser P, Grouzmann E, Preller KH, Vollenweider FX, et al. Acute effects of lysergic acid diethylamide in healthy subjects. Biol Psychiatry. 2015;78(8):544-53. doi:10.1016/j.biopsych.2014.11.015.
Wexler P. Encyclopedia of Toxicology. Vol. 2. Academic Press, USA; 2014. p. 750-2.
Rickli A, Luethi D, Reinisch J, Buchy D, Hoener MC, Liechti ME. Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacology. 2015;99:546-53. doi:10.1016/j.neuropharm.2015.08.034.
Giacomelli S, Palmery M, Romanelli L, Cheng CY, Silvestrini B. Lysergic acid diethylamide (LSD) is a partial agonist of D2 dopaminergic receptors and it potentiates dopamine-mediated prolactin secretion in lactotrophs in vitro. Life Sci. 1998;63(3):215-22. doi:10.1016/s0024-3205(98)00262-8.
Hoch PH. Experimentally produced psychoses. Am J Psychiatry. 1951; 107:607–11.
Marona-Lewicka D, Nichols CD, Nichols DE. An animal model of schizophrenia based on chronic LSD administration: old idea, new results. Neuropharmacology. 2011;61(3):503-12. doi:10.1016/j.neuropharm.2011.02.006.
Halberstadt AL, Geyer MA. Serotonergic hallucinogens as translational models relevant to schizophrenia. Int J Neuropsychopharmacol. 2013;16(10):2165-80. doi:10.1017/S1461145713000722.
Sanders-Bush E, Burris KD, Knoth K. Lysergic acid diethylamide and 2, 5-dimethoxy-4-methylamphetamine are partial agonists at serotonin receptors linked to phosphoinositide hydrolysis. J Pharmacol Exp Ther. 1988; 246(3):924-8.
Reissig CJ, Eckler JR, Rabin RA, Winter JC. The 5-HT1A receptor and the stimulus effects of LSD in the rat. Psychopharmacology (Berl). 2005;182(2):197-204. doi:10.1007/s00213-005-0068-6.
Nichols CD, Sanders-Bush E. Molecular genetic responses to lysergic acid diethylamide include transcriptional activation of MAP kinase phosphatase-1, C/EBP-beta and ILAD-1, a novel gene with homology to arrestins. J Neurochem. 2004;90(3):576-84. doi:10.1111/j.1471-4159.2004.02515.x.
Marona-Lewicka D, Thisted RA, Nichols DE. Distinct temporal phases in the behavioral pharmacology of LSD: dopamine D2 receptor-mediated effects in the rat and implications for psychosis. Psychopharmacology (Berl). 2005;180(3):427-35. doi:10.1007/s00213-005-2183-9.
Marona-Lewicka D, Nichols DE. Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol Biochem Behav. 2007;87(4):453-61. doi: 10.1016/j.pbb.2007.06.001.
Martin DA, Marona-Lewicka D, Nichols DE, Nichols CD. Chronic LSD alters gene expression profiles in the mPFC relevant to schizophrenia. Neuropharmacology. 2014;83:1-8. doi: 10.1016/j.neuropharm.2014.03.013.
Solinas M, Panlilio LV, Justinova Z, Yasar S, Goldberg SR. Using drug-discrimination techniques to study the abuse-related effects of psychoactive drugs in rats. Nat Protoc. 2006;1(3):1194-206. doi:10.1038/nprot.2006.167.
Geyer MA, Swerdlow NR, Mansbach RS, Braff DL. Startle response models of sensorimotor gating and habituation deficits in schizophrenia. Brain Res Bull. 1990; 25:485–98.
Nichols DE. Psychedelics. Pharmacol Rev. 2016 Apr;68(2):264-355. doi: 10.1124/pr.115.011478.
Schneider, K. Clinical psychopathology. New York, NY, USA: Grune & Stratton; 1959. p. 95.
Steeds H, Carhart-Harris RL, Stone JM. Drug models of schizophrenia. Ther Adv Psychopharmacol. 2015;5(1):43-58. doi:10.1177/2045125314557797.
Woolley D, Shaw E. Some neurophysiological aspects of serotonin. Br Med J. 1954; 2:122–6.
Shaw E, Woolley D. Some serotoninlike activities of lysergic acid diethylamide. Science. 1956; 124:121–2.
Blacker KH, Jones RT, Stone GC, Pfefferbaum D. Chronic users of LSD: the "acidheads". Am J Psychiatry. 1968;125(3):97-107.
McGlothlin W, Arnold DO, Freedman DX. Organicity measures following repeated LSD ingestion. Arch Gen Psychiatry. 1969;21(6):704-9. doi: 10.1001/archpsyc.1969.01740240064008.
Abraham HD. A chronic impairment of colour vision in users of LSD. Br J Psychiatry. 1982;140:518-20. doi:10.1192/bjp.140.5.518.
Halpern JH, Pope HG Jr. Hallucinogen persisting perception disorder: what do we know after 50 years? Drug Alcohol Depend. 2003;69(2):109-19. doi:10.1016/s0376-8716(02)00306-x.
Yanakieva S, Polychroni N, Family N, Williams LTJ, Luke DP, Terhune DB. The effects of microdose LSD on time perception: a randomised, double-blind, placebo-controlled trial. Psychopharmacology (Berl). 2019;236(4):1159-70. doi:10.1007/s00213-018-5119-x.
Schmid Y, Liechti ME. Long-lasting subjective effects of LSD in normal subjects. Psychopharmacology (Berl). 2018;235(2):535-45. doi: 10.1007/s00213-017-4733-3.
Müller F, Dolder PC, Schmidt A, Liechti ME, Borgwardt S. Altered network hub connectivity after acute LSD administration. Neuroimage Clin. 2018;18:694-701. doi: 10.1016/j.nicl.2018.03.005.
Langs RJ, Barr HL. Lysergic acid diethylamide (LSD-25) and schizophrenic reactions. A comparative study. J Nerv Ment Dis. 1968 Aug;147(2):163-72. doi: 10.1097/00005053-196808000-00008.
Anastasopoulos G, Photiades H. Effects of LSD-25 on relatives of schizophrenic patients. J Ment Sci. 1962;108:95-8. doi: 10.1192/bjp.108.452.95.
Cohen S. Lysergic acid diethylamide: side effects and complications. J Nerv Ment Dis. 1960;130:30-40. doi:10.1097/00005053-196001000-00005.
Bower B. Chemical Enlightenment. 2006. Available from: www.sciencenews.org
Pahnke WN. LSD and religious experience. LSD man & society. Middletown, CT, USA: Wesleyan University Press; 1967. pp. 60–85.
LSD. Available from: https://bg.wikipedia.org/wiki/%D0%9B%D0%A1%D0%94#cite_ref-13. (in Bulgarian).
Cohen S. A classification of LSD complications. Psychosomatics. 1966;7(3):182-6. doi:10.1016/S0033-3182(66)72149-5.
Borgwardt S, Liechti ME. Acute effects of lysergic acid diethylamide in healthy subjects. Biol Psychiatry. 2015; 78:544–53.
Nichols DE, Grob CS. Is LSD toxic? Forensic Sci Int. 2018;284:141-5. doi:10.1016/j.forsciint.2018.01.006.
Suzuki J, Poklis JL, Poklis A. "My friend said it was good LSD": a suicide attempt following analytically confirmed 25I-NBOMe ingestion. J Psychoactive Drugs. 2014;46(5):379-82. doi:10.1080/02791072.2014.960111.
Grumann C, Henkel K, Stratford A, Hermanns-Clausen M, Passie T, Brandt SD, et al. Validation of an LC-MS/MS method for the quantitative analysis of 1P-LSD and its tentative metabolite LSD in fortified urine and serum samples including stability tests for 1P-LSD under different storage conditions. J Pharm Biomed Anal. 2019;174:270-6. doi:10.1016/j.jpba.2019.05.062.
Luethi D, Liechti ME. Designer drugs: mechanism of action and adverse effects. Arch Toxicol. 2020;94(4):1085-1133. doi: 10.1007/s00204-020-02693-7.
Coney LD, Maier LJ, Ferris JA, Winstock AR, Barratt MJ. Genie in a blotter: A comparative study of LSD and LSD analogues' effects and user profile. Hum Psychopharmacol. 2017;32(3). doi:10.1002/hup.2599. doi:10.1002/hup.2599.
Shulgin A, Shulgin A. PIHKAL: a chemical love story. Transform Press, Berkley; 1995.
Shulgin A, Shulgin A. TIHKAL: the continuation. Transform Press, Berkley; 1997.
Wagmann L, Brandt SD, Stratford A, Maurer HH, Meyer MR. Interactions of phenethylamine-derived psychoactive substances of the 2C-series with human monoamine oxidases. Drug Test Anal. 2019a; 11(2):318–24. doi:10.1002/dta.2494.
Wagmann L, Richter LHJ, Kehl T, Wack F, Bergstrand MP, Brandt SD, et al. In vitro metabolic fate of nine LSD-based new psychoactive substances and their analytical detectability in different urinary screening procedures. Anal Bioanal Chem. 2019b; 411(19):4751–63.
Volkow ND, Morales M. The brain on drugs: From reward to addiction. Cell. 2015 Aug 13;162(4):712-25. doi: 10.1016/j.cell.2015.07.046.
O’Brien CP, Gardner EL. Critical assessment of how to study addiction and its treatment: human and non-human animal models. Pharmacol Ther. 2005; 108:18-58.
Unger S. The current scientific status of psychedelic drug research; unpublished paper read to the Conference on Method in Philosophy and the Sciences in New York City on 3 May 1964. Vol. 3. The University of Edinburgh: Edinburgh, UK; 1964.
Hartley S, Barrowclough C, Haddock G. Anxiety and depression in psychosis: A systematic review of associations with positive psychotic symptoms. Acta Psychiatr Scand. 2013; 128:327–46.
Faerden A, Barrett EA, Nesvåg R, Friis S, Finset A, Marder SR, et al. Apathy, poor verbal memory and male gender predict lower psychosocial functioning one year after the first treatment of psychosis. Psychiatry Res. 2013;210(1):55-61. doi:10.1016/j.psychres.2013.02.007.
Tan N, van Os J. Schizofreniespectrum en andere psychotische stoornissen in de DSM-5 [The schizophrenia spectrum and other psychotic disorders in the DSM-5]. Tijdschr Psychiatr. 2014;56(3):167-72.
Osmond H, Smythies J. Schizophrenia: A new approach. Br J Psychiatry. 1952; 98:309–15.
Power RA, Verweij KJ, Zuhair M, Montgomery GW, Henders AK, Heath AC, et al. Genetic predisposition to schizophrenia associated with increased use of cannabis. Mol Psychiatry. 2014;19(11):1201-4. doi:10.1038/mp.2014.51.
Henquet C, Di Forti M, Morrison P, Kuepper R, Murray RM. Gene-environment interplay between cannabis and psychosis. Schizophr Bull. 2008;34(6):1111-21. doi:10.1093/schbul/sbn108.
Vardy MM, Kay SR. LSD psychosis or LSD-induced schizophrenia? A multimethod inquiry. Arch Gen Psychiatry. 1983;40(8):877-83. doi:10.1001/archpsyc.1983.01790070067008.
Barrett FS, Bradstreet MP, Leoutsakos JS, Johnson MW, Griffiths RR. The Challenging Experience Questionnaire: Characterization of challenging experiences with psilocybin mushrooms. J Psychopharmacol. 2016;30(12):1279-95. doi:10.1177/0269881116678781.
Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13(2):261-76. doi:10.1093/schbul/13.2.261.