Sulfur is a non-metal macroelement with critical importance for the human body integrity and homeostasis. Sulfur-containing biomolecules exert important functions in redox balance maintenance, enzyme functionality, DNA methylation and repair, modification of extracellular matrix components, and xenobiotic metabolism.
Many studies related to the sulfur utilization and metabolism are focused on foods rich in organosulfur compounds that are associated with health benefits. It is believed that sulfur-containing mineral water also could have beneficial effects on the human health, but this knowledge is currently based on empirical data.
It could be suggested that the intake of sulfurous mineral waters as a part of the everyday diet would have measurable effects on the human metabolism.
Albertini M, Dachà M, Teodori L, Conti M. Drinking mineral waters: biochemical effects and health implications – the state-of-the-art. Int J Environ Health Res. 2007;1(1):153-69. doi:10.1504/IJENVH.2007.012230.
Marktl W. Gesundheitliche Bedeutung natürlicher Mineralwässer [Health-related effects of natural mineral waters]. Wien Klin Wochenschr. 2009;121(17-18):544-50. (in German). doi: 10.1007/s00508-009-1244-1.
Ottaviano G, Marioni G, Staffieri C, Giacomelli L, Marchese-Ragona R, Bertolin A, Staffieri A. Effects of sulfurous, salty, bromic, iodic thermal water nasal irrigations in nonallergic chronic rhinosinusitis: a prospective, randomized, double-blind, clinical, and cytological study. Am J Otolaryngo1. 2011;32(3):235-9. doi: 10.1016/j.amjoto.2010.02.004.
Schoppen S, Perez-Granados AM, Carbajal A, Oubifia P, Sanchez-Muniz FJ, Gomez-Gerique JA, Vaquero MP. A sodium-rich carbonated mineral water reduces cardiovascular risk in postmenopausal women. J Nutr. 2004; 134(5):1058-63. doi: 10.1093/jn/134.5.1058.
Toxqui L, Vaquero MP. An intervention with mineral water decreases cardiometabolic risk biomarkers. a crossover, randomised, controlled trial with two mineral waters in moderately hypercholesterolaemic adults. Nutrients. 2016;8(7):400. doi: 10.3390/nu8070400.
Vannucci L, Fossi C, Quattrini S, Guasti L, Pampaloni B, Gronchi G, et al. Calcium intake in bone health: a focus on calcium-rich mineral waters. Nutrients. 2018;10(12):1930. doi: 10.3390/nu10121930.
Wallace JL, Vong L, McKnight W, Dicay M, Martin GR. Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. Gastroenterology 2009;137(2):569-78, 578.e1. doi: 10.1053/j.gastro.2009.04.012.
Wallace JL. Hydrogen sulfide-releasing anti-inflammatory drugs. Trends Pharmacol Sci. 2007;28(10):501-5. doi: 10.1016/j.tips.2007.09.003.
Ingenbleek Y, Kimura H. Nutritional essentiality of sulfur in health and disease. Nutr Rev. 2013;71(7):413-32. doi: 10.1111/nure.12050.
Nimni ME, Han B, Cordoba F. Are we getting enough sulfur in our diet? Nutr Metab (Lond). 2007;4:24. doi: 10.1186/1743-7075-4-24.
Parcell S. Sulfur in human nutrition and applications in medicine. Altern Med Rev. 2002; 7(1):22-44.
Toohey J. Cooper A. Thiosulfoxide (sulfane) sulfur: new chemistry and new regulatory roles in biology. Molecules. 2014;19(8):12789-813. doi: 10.3390/molecules190812789.
Toohey J. Sulfur signaling: is the agent sulfide or sulfane? Anal Biochem. 2011;415(2):221.
Abdull Razis AF, Konsue N, Ioannides C. Isothiocyanates and xenobiotic detoxification. Mol Nutr Food Res. 2018;62(18):1-9. doi: 10.1002/mnfr.201700916.
Conaway CC, Yang YM, Chung FL. Isothiocyanates as cancer chemopreventive agents: their biological activities and metabolism in rodents and humans. Curr Drug Metab. 2002; 3(3):233-55. doi: 10.2174/1389200023337496.
Costantino M, Nappi G, Contaldi E, Lampa E. Effectiveness of sulphur spa therapy in psoriasis: Clinical-experimental study. Med Clin Terma. 2005; 18(58):127-37.
Bottiglieri T. S-Adenosyl-l-methionine (SAMe): from the bench to the bedside—molecular basis of a pleiotrophic molecule. Am J Clin Nutr. 2002; 76(5):1151S-7S. doi: 10.1093/ajcn/76/5.1151S.
Brosnan JT, Brosnan ME. The sulfur-containing amino acids: an overview. J Nutr. 2006;136(6 Suppl):1636S-40S. doi: 10.1093/jn/136.6.1636S.
da Silva RP, Nissim I, Brosnan ME, Brosnan JT. Creatine synthesis: hepatic metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo. Am J Physiol Endocrinol Metab. 2009;296(2):E256-E261. doi:10.1152/ajpendo.90547.2008.
Drabkin HJ, RajBhandary UL. Initiation of protein synthesis in mammalian cells with codons other than AUG and amino acids other than methionine. Mol Cell Biol. 1998;18(9):5140-7. doi: 10.1128/mcb.18.9.5140.
Górska-Warsewicz H, Laskowski W, Kulykovets O, Kudlińska-Chylak A, Czeczotko M, Rejman K. Food products as sources of protein and amino acids-the case of Poland. Nutrients. 2018;10(12):1977. doi: 10.3390/nu10121977.
Kouzarides T. Histone methylation in transcriptional control. Curr Opin Genet Dev. 2002; 12(2):198-209. doi: 10.1016/s0959-437x(02)00287-3.
Palego L, Betti L, Giannaccini G. Sulfur metabolism and sulfur-containing amino acids: I-molecular effectors. Biochem Pharmacol (Los Angel). 2015, 4:1. doi:10.4172/2167-0501.1000158
Phillips T. The role of methylation in gene expression. Nat Educ. 2008; 1(1):116.
Stipanuk MH. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr. 2004; 24:539-77. doi: 10.1146/annurev.nutr.24.012003.132418.
Finkelstein JD. Pathways and regulation of homocysteine metabolism in mammals. Semin Thromb Hemost. 2000;26(3):219–25. doi: 10.1055/s-2000-8466.
Garg SK, Yan Z, Vitvitsky V, Banerjee R. Differential dependence on cysteine from transsulfuration versus transport during T cell activation. Antioxid Redox Signal. 2011;15(1):39–47. doi: 10.1089/ars.2010.3496.
Jessop CE, Chakravarthi S, Watkins RH, Bulleid NJ. Oxidative protein folding in the mammalian endoplasmic reticulum. Biochem Soc Trans. 2004;32(Pt 5):655-8. doi: 10.1042/BST0320655.
Kabil O, Vitvitsky V, Banerjee R. Sulfur as a signaling nutrient through hydrogen sulfide. Annu Rev Nutr. 2014;34:171-205. doi: 10.1146/annurev-nutr-071813-105654.
Lu SC. Glutathione synthesis. Biochim Biophys Acta. 2013;1830(5):3143–53. doi: 10.1016/j.bbagen.2012.09.008
Stipanuk MH, Dominy JE Jr, Lee JI, Coloso RM. Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr. 2006;136(6 Suppl):1652S-9S. doi: 10.1093/jn/136.6.1652S.
Albrecht J, Schousboe A. Taurine interaction with neurotransmitter receptors in the CNS: an update. Neurochem Res. 2005; 30(12):1615-21. doi: 10.1007/s11064-005-8986-6.
Jang JS, Piao S, C YN, Kim C. Taurine chloramine activates Nrf2, increases HO-1 expression and protects cells from death caused by hydrogen peroxide. J Clin Biochem Nutr. 2009; 45(1):37-43. doi: 10.3164/jcbn.08-262.
Jeon SH, Lee MY, Rahman MM, Kim SJ, Kim GB, Park SY, et al. The antioxidant, taurine reduced lipopolysaccharide (LPS)-induced generation of ROS, and activation of MAPKs and Bax in cultured pneumocytes. Pulm Pharmacol Ther. 2009;22(6):562-6. doi: 10.1016/j.pupt.2009.07.004.
Murakami S, Fujita M, Nakamura M, Sakono M, Nishizono S, Sato M, et al. Taurine ameliorates cholesterol metabolism by stimulating bile acid production in high-cholesterol-fed rats. Clin Exp Pharmacol Physiol. 2016;43(3):372-8. doi: 10.1111/1440-1681.12534.
Oliveira MW, Minotto JB, de Oliveira MR, Zanotto-Filho A, Behr GA, Rocha RF, et al. Scavenging and antioxidant potential of physiological taurine concentrations against different reactive oxygen/nitrogen species. Pharmacol Rep. 2010;62(1):185-93. doi: 10.1016/s1734-1140(10)70256-5.
Quinn MR, Barua M, Liu Y, Serban V. Taurine chloramine inhibits production of inflammatory mediators and iNOS gene expression in alveolar macrophages, a tale of two pathways: part I, NF-kappaB signaling. Adv Exp Med Biol. 2003; 526:341–8. doi: 10.1007/978-1-4615-0077-3_42.
Schaffer SW, Azuma J, Mozaffari M. Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol. 2009; 87(2):91-9. doi: 10.1139/Y08-110.
Schaffer SW, Jong CJ, Ramila KC, Azuma J. Physiological roles of taurine in heart and muscle. J Biomed Sci. 2010;17 Suppl 1(Suppl 1):S2. doi: 10.1186/1423-0127-17-S1-S2.
Wójcik OP, Koenig KL, Zeleniuch-Jacquotte A, Costa M, Chen Y. The potential protective effects of taurine on coronary heart disease. Atherosclerosis. 2010;208(1):19-25. doi: 10.1016/j.atherosclerosis.2009.06.002.
Borrás C, Esteve JM, Viña JR, Sastre J, Viña J, Pallardó FV. Glutathione regulates telomerase activity in 3T3 fibroblasts. J Biol Chem. 2004;279(33):34332-5. doi: 10.1074/jbc.M402425200.
Kleinman WA, Richie JP. Status of glutathione and other thiols and disulfides in human plasma. Biochem Pharmacol. 2000; 60(1):19-29. doi: 10.1016/s0006-2952(00)00293-8.
Marí M, Morales A, Colell A, García-Ruiz C, Fernández-Checa JC. Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal. 2009;11(11):2685-700. doi: 10.1089/ARS.2009.2695.
Pizzorno J. Glutathione! Integr Med (Encinitas). 2014; 13(1):8-12.
Sears ME. Chelation: harnessing and enhancing heavy metal detoxification--a review. ScientificWorldJournal. 2013;2013:219840. doi: 10.1155/2013/219840.
Wei YH, Ma YS, Lee HC, Lee CF, Lu CY. Mitochondrial theory of aging matures--roles of mtDNA mutation and oxidative stress in human aging. Zhonghua Yi Xue Za Zhi (Taipei). 2001;64(5):259-70.
Blackler R, Syer S, Bolla M, Ongini E, Wallace JL. Gastrointestinal-sparing effects of novel NSAIDs in rats with compromised mucosal defence. PLoS One. 2012;7(4):e35196. doi: 10.1371/journal.pone.0035196.
Cunha TM, Dal-Secco D, Verri WA Jr, Guerrero AT, Souza GR, Vieira SM, et al. Dual role of hydrogen sulfide in mechanical inflammatory hypernociception. Eur J Pharmacol. 2008;590(1-3):127-35. doi: 10.1016/j.ejphar.2008.05.048.
Fiorucci S, Antonelli E, Distrutti E, Rizzo G, Mencarelli A, Orlandi S, et al. Inhibition of hydrogen sulfide generation contributes to gastric injury caused by antiinflammatory nonsteroidal drugs. Gastroenterology 2005; 129(4):1210-24. doi: 10.1053/j.gastro.2005.07.060.
Gallego D, Clave P, Donovan J, Rahmati R, Grundy D, Jimenez M, et al. The gaseous mediator, hydrogen sulphide, inhibits in vitro motor patterns in the human, rat and mouse colon and jejunum. Neurogastroenterol Motil. 2008;20(12):1306-16. doi: 10.1111/j.1365-2982.2008.01201.x.
Ishigami M, Hiraki K, Umemura K, Ogasawara Y, Ishii K, Kimura H. A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid Redox Signal 2009; 11(2):205-14. doi: 10.1089/ars.2008.2132.
Kimura Y, Kimura H. Hydrogen sulfide protects neurons from oxidative stress. FASEB J. 2004;18(10):1165-7. doi: 10.1096/fj.04-1815fje.
Kulkarni KH, Monjok EM, Zeyssig R, Kouamou G, Bongmba ON, Opere CA, et al. Effect of hydrogen sulfide on sympathetic neurotransmission and catecholamine levels in isolated porcine iris-ciliary body. Neurochem Res. 2009;34(3):400-6. doi: 10.1007/s11064-008-9793-7.
Lowicka E, Beltowski J. Hydrogen sulfide (H2S) – the third gas of interest for pharmacologists. Pharmacol Rep. 2007;59(1):4-24.
Patacchini R, Santicioli P, Giuliani S, Maggi CA. Hydrogen sulfide (H2S) stimulates capsaicin-sensitive primary afferent neurons in the rat urinary bladder. Br J Pharmacol. 2004;142(1):31-4. doi: 10.1038/sj.bjp.0705764.
Qu K, Lee SW, Bian JS, Low CM, Wong PT. Hydrogen sulfide: neurochemistry and neurobiology. Neurochem Int. 2008;52(1-2):155-65. doi: 10.1016/j.neuint.2007.05.016.
Wang R. Hydrogen sulfide: the third gasotransmitter in biology and medicine. Antioxid Redox Signal. 2010; 12(9):1061-4. doi: 10.1089/ars.2009.2938.
Whiteman M, Li L, Kostetski I, Chu SH, Siau JL, Bhatia M, et al. Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem Biophys Res Commun, 2006; 343(1):303-10. doi: 10.1016/j.bbrc.2006.02.154.
Zhao W, Wang R. H2S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol. 2002; 283(2):H474-80. doi: 10.1152/ajpheart.00013.2002.
Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J. 2001; 20(21):6008-16. doi: 10.1093/emboj/20.21.6008.
Abdull Razis AF, Mohd Noor N, Konsue N. Induction of epoxide hydrolase, glucuronosyl transferase, and sulfotransferase by phenethyl isothiocyanate in male Wistar albino rats. Biomed Res Int. 2014;2014:391528. doi: 10.1155/2014/391528.
Ali M, Al-Qattan KK, Al-Enezi F, Khanafer RMA, Mustafa T. Effect of allicin from garlic powder on serum lipids and blood pressure in rats fed with a high cholesterol diet. Prostaglandins Leukot Essent Fatty Acids. 2000;62(4):253-9. doi: 10.1054/plef.2000.0152.
Ariga T, Seki T. Antithrombotic and anticancer effects of garlic-derived sulfur compounds: a review. Biofactors 2006; 26(2):93-103. doi: 10.1002/biof.5520260201.
Asdaq SMB, Inamdar MN. The potential benefits of a garlic and hydrochlorothiazide combination as anti-hypertensive and cardioprotective in rats. J Nat Med. 2011; 65(1):81-8. doi: 10.1007/s11418-010-0467-9.
Avato P, Tursi F, Vitali C, Miccolis V, Candido V. Allylsulfide constituents of garlic volatile oil as anti-microbial agents. Phytomedicine. 2000;7(3):239-43. doi:10.1016/S0944-7113(00)80010-0.
Ayaz E, Türel I, Gül A, Yilmaz O. Evaluation of the anthelmentic activity of garlic (Allium sativum) in mice naturally infected with Aspiculuris tetraptera. Recent Pat Antiinfect Drug Discov. 2008;3(2):149-52. doi: 10.2174/157489108784746605.
Bahadoran Z, Mirmiran P, Azizi F. Potential efficacy of broccoli sprouts as a unique supplement for management of type 2 diabetes and its complications. J Med Food. 2013; 16(5):375-82. doi: 10.1089/jmf.2012.2559.
Chen C, Pung D, Leong V, Hebbar V, Shen G, Nair S, et al. Induction of detoxifying enzymes by garlic organosulfur compounds through transcription factor Nrf2: effect of chemical structure and stress signals. Free Radic Biol Med. 2004;37(10):1578-90. doi: 10.1016/j.freeradbiomed.2004.07.021.
Keum YS, Jeong WS, Kong AN. Chemopreventive functions of isothiocyanates. Drug News Perspect. 2005;18(7):445-51. doi: 10.1358/dnp.2005.18.7.939350.
Munday R, Munday CM. Induction of Phase II detoxification enzymes in rats by plant-derived isothiocyanates: comparison of allyl isothiocyanate with sulforaphane and related compounds. J Agric Food Chem. 2004;52(7):1867-71. doi: 10.1021/jf030549s.
Zhou C, Poulton EJ, Grün F, Bammler TK, Blumberg B, Thummel KE, et al. The dietary isothiocyanate sulforaphane is an antagonist of the human steroid and xenobiotic nuclear receptor. Mol Pharmacol. 2007;71(1):220-9. doi: 10.1124/mol.106.029264.
Benedetti S, Canino C, Tonti G, Medda V, Calcaterra P, Nappi G, et al. Biomarkers of oxidation, inflammation and cartilage degradation in osteoarthritis patients undergoing sulfur-based spa therapies. Clin Biochem. 2010;43(12):973-8. doi: 10.1016/j.clinbiochem.2010.05.004.
Benedetti S, Benvenuti F, Nappi G, Fortunati NA, Marino L, Aureli T, et al. Antioxidative effects of sulfurous mineral water: protection against lipid and protein oxidation. Eur J Clin Nutr. 2009;63(1):106-12. doi: 10.1038/sj.ejcn.1602892.
Benedetti S, Pagliari S, Benvenuti, Marini D, Galli T, Oliva F, et al. Antioxidative effects of sulphurous water from Macerata Feltria Thermal resort in patients with osteoarthritis. Prog Nutr. 2007; 9(1):46-52.
Carbajo J, Maraver F. Sulphurous mineral waters: new applications for health. Evid Based Complement Alternat Med. 2017; 2017:8034084. doi: 10.1155/2017/8034084.
Prandelli C, Parola C, Buizza L, Delbarba A, Marziano M, Salvi V, et al. Sulphurous thermal water increases the release of the anti-inflammatory cytokine IL-10 and modulates antioxidant enzyme activity. Int J Immunopathol Pharmacol. 2013; 26(3):633-46. doi: 10.1177/039463201302600307.
Sadik N, El-Seweidy M., Shaker O. The antiapoptotic effects of sulphurous mineral water and sodium hydrosulphide on diabetic rat testes. Cell Physiol Biochem. 2011; 28(5):887-98. doi: 10.1159/000335803.
Scheidleder B, Holzer F, Marktl W. Einfluss von Schwefeltrinkkuren auf Parameter des Lipidstoffwechsels, den antioxidativen Status und die Konzentration von Peroxiden bei Kurpatienten [Effect of sulfur administration on lipid levels, antioxidant status and peroxide concentration in health resort patients]. Forsch Komplementarmed Klass Naturheilkd. 2000;7(2):75-8. (in German). doi: 10.1159/000021313.
Yang C, Yang Z, Zhang M, Dong Q, Wang X, Lan A, et al. Hydrogen sulfide protects against chemical hypoxia-induced cytotoxicity and inflammation in HaCaT cells through inhibition of ROS/NF-κB/COX-2 pathway. PLoS One. 2011;6(7):e21971. doi: 10.1371/journal.pone.0021971.
Altman N. Healing springs: the ultimate guide to taking the waters - from hidden springs to the world’s greatest spas. Rochester Vt.: Healing Arts Press; 2000. p.320.
Leibetseder V, Strauss-Blasche G, Holzer F, Marktl W, Ekmekcioglu C. Improving homocysteine levels through balneotherapy: effect of sulphur baths. Clin Chim Acta. 2004;343(1-2):105-11. doi: 10.1016/j.cccn.2003.12.024.
Soria M, González-Haro C, Esteva S, Escanero JF, Pina JR. Effect of sulphurous mineral water in haematological and biochemical markers of muscle damage after an endurance exercise in well-trained athletes. J Sports Sci. 2014;32(10):954-62. doi: 10.1080/02640414.2013.868921.
Costantino M, Marongiu MG, Iannotti S, Filippelli A. Sulphurous mud-balneotherapy: an possible strategy for the plaque psoriasis. PARIPEX - Indian J Res 2015; 4(3):69-74.
Huang A, Seité S, Adar T. The use of balneotherapy in dermatology. Clin Dermatol. 2018;36(3):363-368. doi: 10.1016/j.clindermatol.2018.03.010.
Matz H, Orion E, Wolf R. Balneotherapy in dermatology. Dermatol Ther. 2003;16(2):132-40. doi: 10.1046/j.1529-8019.2003.01622.x.
Ekmekcioglu C, Strauss-Blasche G, Holzer F, Marktl W. Effect of sulfur baths on antioxidative defense systems, peroxide concentrations and lipid levels in patients with degenerative osteoarthritis. Forsch Komplementarmed Klass Naturheilkd. 2002;9(4):216-20. doi: 10.1159/000066031.
Karagülle MZ, Tütüncü ZN, Aslan O, Basak E, Mutlu A. Effects of thermal sulphur bath cure on adjuvant arthritic rats. Phys Rehab Kur Med. 1996; 6(2):53-7.
Kovács C, Pecze M, Tihanyi Á, Kovács L, Balogh S, Bender T. The effect of sulphurous water in patients with osteoarthritis of hand. Double-blind, randomized, controlled follow-up study. Clin Rheumatol. 2012;31(10):1437-42. doi: 10.1007/s10067-012-2026-0.
Vassileva S. Mineral water and spas in Bulgaria. Clinics Dermatol. 1996; 14:601-5.
Vladeva L, Kostadinov D. Bulgarian drinking mineral waters. Part 1. Sofia: IКМ-8-М; 1996. (in Bulgarian).
Karakolev D. Healing guidebook of Bulgarian mineral waters. Sofia: Medicina i Fizkultura; 1990. (in Bulgarian).
Vladeva L, Kostadinov D. Bulgarian drinking mineral waters. Part 2. Sofia: IКМ-8-М; 2007. (in Bulgarian).
Sokrateva T, Ivanova D, Galunska B, Todorova M, Ivanov D. Physicochemical analysis of Varna basin mineral water. Proc Intern Multidisc Sci GeoConf. SGEM. 2018;18(3.1):555-564.
Shefa U, Yeo SG, Kim MS, Song IO, Jung J, Jeong NY, et al. Role of gasotransmitters in oxidative stresses, neuroinflammation, and neuronal repair. Biomed Res Int. 2017;2017:1689341. doi: 10.1155/2017/1689341.
Doeller JE, Isbell TS, Benavides G, Koenitzer J, Patel H, Patel RP, et al. Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal Biochem. 2005; 341(1):40-51. doi: 10.1016/j.ab.2005.03.024.
Kloesch B, Liszt M, Krehan D, Broell J, Kiener H, Steiner G. High concentrations of hydrogen sulphide elevate the expression of a series of pro-inflammatory genes in fibroblast-like synoviocytes derived from rheumatoid and osteoarthritis patients. Immunol Lett. 2012;141(2):197-203. doi: 10.1016/j.imlet.2011.10.004.
Olas B. Hydrogen sulfide as a "double-faced" compound: One with pro- and antioxidant effect. Adv Clin Chem. 2017;78:187-96. doi: 10.1016/bs.acc.2016.07.005.
Jeong SO, Pae HO, Oh GS, Jeong GS, Lee BS, Lee S, et al. Hydrogen sulfide potentiates interleukin-1beta-induced nitric oxide production via enhancement of extracellular signal-regulated kinase activation in rat vascular smooth muscle cells. Biochem Biophys Res Commun. 2006;345(3):938-44. doi: 10.1016/j.bbrc.2006.05.002.
Oh GS, Pae HO, Lee BS, Kim BN, Kim JM, Kim HR, et al. Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic Biol Med. 2006;41(1):106-19. doi: 10.1016/j.freeradbiomed.2006.03.021.
Linden DR. Hydrogen sulfide signaling in the gastrointestinal tract. Antioxid Redox Signal. 2014;20(5):818-30. doi:10.1089/ars.2013.5312.