Introduction: Adiponectin is a peptide hormone produced primarily by adipose tissue. Numerous studies have proven its anti-atherogenic and anti-inflammatory effects. Low adiponectin levels have been reported as a risk factor for atherosclerosis and diabetes in humans. However, some clinical researches, as well as meta-analyses, have shown an association between high levels of adiponectin and mortality. Unfortunately, when high adiponectin levels are not related to health benefits this is referred as the adiponectin paradox.
Aim: The aim of the current item was to investigate new possible causes of the adiponectin paradox.
Materials and Methods: A search with keywords in scientific databases was conducted to collect current data.
Results and Discussion: Circulating adiponectin levels are influenced by various factors, both endogenous, such as genetic, hormonal, or inflammatory, and exogenous, such as nutritional or medicаtion administration. One possible explanation for the decrease in adiponectin levels in malignancy is that the prolonged inflammatory status of the cancer patient results in increased cytokine levels that suppress adiponectin synthesis. Another possibility is the overloading of the endoplasmic reticulum due to oxidative stress and low-grade inflammation associated with obesity. The regulation of adiponectin levels in response to vascular impairment differs between obese and lean patients, suggesting that the regulation of adiponectin levels is impaired by adipose tissue growth. Dysfunctional adiponectin signaling and loss of membrane-bound T-cadherin could cause a gradual latter decrease in the signal transduction of adiponectin.
Conclusion: In recent years, numerous studies on the adiponectin paradox have been conducted, generating various hypotheses about the adiponectin roles. However, the complete clarification of the concept of the adiponectin paradox remains a challenge for the future investigations.
Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess T, et al. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J Biol Chem. 2003;278(11):9073-85. doi: 10.1074/jbc.M207198200.
Nigro E, Scudiero O, Monaco ML, Palmieri A, Mazzarella G, Costagliola C, et al. New insight into adiponectin role in obesity and obesity-related diseases. BioMed Res Int. 2014;2014:658913. doi: 10.1155/2014/658913.
Li Y, Yatsuya H, Iso H, Toyoshima H, Tamakoshi K. Inverse relationship of serum adiponectin concentration with type 2 diabetes mellitus incidence in middle-aged Japanese workers: six-year follow-up. Diabetes Metab Res Rev. 2012;28(4):349–56. doi: 10.1002/dmrr.2277.
Ohashi K, Parker JL, Ouchi N, Higuchi A, Vita JA, Gokce N, et al. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J Biol Chem. 2010;285(9):6153–60. doi: 10.1074/jbc.M109.088708.
Hirose H, Yamamoto Y, Seino-Yoshihara Y, Kawabe H, Saito I. Serum high-molecular-weight adiponectin as a marker for the evaluation and care of subjects with metabolic syndrome and related disorders. J Atheroscler Thromb. 2010;17(12):1201-11. doi: 10.5551/jat.6106.
King GA, Deemer SE, Thompson DL. Adiponectin is associated with the risk of the metabolic syndrome and insulin resistance in women. Acta Diabetol. 2012;49 Suppl 1(01):S41-9. doi: 10.1007/s00592-010-0192-6.
Calton EK, Miller VS, Soares MJ. Factors determining the risk of the metabolic syndrome: is there a central role for adiponectin? Eur J Clin Nutr. 2013;67(5):485-91. doi: 10.1038/ejcn.2013.1.
Zha D, Wu X, Gao P. Adiponectin and its receptors in diabetic kidney disease: molecular mechanisms and clinical potential. Endocrinology. 2017;158(7):2022–34. doi: 10.1210/en.2016-1765.
Engin A. Adiponectin-Resistance in Obesity. Adv Exp Med Biol. 2017;960:415-41. doi: 10.1007/978-3-319-48382-5_18.
Szabó T, Scherbakov N, Sandek A, Kung T, Von Haehling S, Lainscak M, et al. Plasma adiponectin in heart failure with and without cachexia: catabolic signal linking catabolism, symptomatic status, and prognosis. Nutr Metab Cardiovasc Dis. 2014;24(1):50-6. doi: 10.1016/j.numecd.2013.04.015.
Lindberg S, Jensen JS, Hoffmann S, Pedersen SH, Iversen AZ, Galatius S, et al. Interplay between adiponectin and pro-atrial natriuretic peptide and prognosis in patients with ST-segment elevation myocardial infarction. Am J Cardiol. 2015;116(9):1340-5. doi: 10.1016/j.amjcard.2015.07.060.
Markaki A, Psylinakis E, Spyridaki A. Adiponectin and end-stage renal disease. Hormones (Athens). 2016;15(3):345-54. doi: 10.14310/horm.2002.1698.
Singer JR, Palmas W, Teresi J, Weinstock R, Shea S, Luchsinger JA. Adiponectin and all-cause mortality in elderly people with type 2 diabetes. Diabetes Care. 2012;35(9):1858-63. doi: 10.2337/dc11-2215.
Semple RK, Halberg NH, Burling K, Soos MA, Schraw T, Luan J, et al. Paradoxical elevation of high-molecular-weight adiponectin in acquired extreme insulin resistance due to insulin receptor antibodies. Diabetes. 2007;56(6):1712–7. doi: 10.2337/db06-1665.
Pereira RI, Snell-Bergeon JK, Erickson C, Schauer IE, Bergman BC, Rewers M, et al. Adiponectin dysregulation and insulin resistance in type 1 diabetes. J Clin Endocrinol Metab. 2012;97(4):E642–7. doi: 10.1210/jc.2011-2542.
Menzaghi C, Trischitta V. The adiponectin paradox for all-cause and cardiovascular mortality. Diabetes. 2018;67(1):12–22. doi: 10.2337/dbi17-0016.
Ramsay JE, Jamieson N, Greer IA, Sattar N. Paradoxical elevation in adiponectin concentrations in women with preeclampsia. Hypertension. 2003;42(5):891–4. doi: 10.1161/01.HYP.0000095981.92542.F6.
Woodward L, Akoumianakis I, Antoniades C. Unravelling the adiponectin paradox: Novel roles of adiponectin in the regulation of cardiovascular disease. Br J Pharmacol. 2017;174(22):4007–20. doi: 10.1111/bph.13619.
Waragai M, Ho G, Takamatsu Y, Wada R, Sugama S, Takenouchi T, et al. Adiponectin paradox in Alzheimer’s disease; relevance to amyloidogenic evolvability? Front Endocrinol (Lausanne). 2020;11:108. doi: 10.3389/fendo.2020.00108.
Satoh K, Nagasawa K, Takebe N, Kinno H, Shozushima M, Onodera K, et al. Adiponectin paradox more evident in non-obese than in obese patients with diabetic microvascular complications. Diabetes Metab Syndr Obes. 2023;16:201-212. doi: 10.2147/DMSO.S387744.
Parida S, Siddharth S, Sharma D. Adiponectin, obesity, and cancer: clash of the bigwigs in health and disease. Int J Mol Sci. 2019;20(10):2519. doi: 10.3390/ijms20102519.
Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001;50(9):2094–9. doi: 10.2337/diabetes.50.9.2094.
Fasshauer M, Kralisch S, Klier M, Lossner U, Bluher M, Klein J, et al. Adiponectin gene expression and secretion are inhibited by interleukin-6 in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2003;301(4):1045–50. doi: 10.1016/S0006-291X(03)00090-1.
Freyre CA, Rauher PC, Ejsing CS, Klemm RW. MIGA2 links mitochondria, the ER, and lipid droplets and promotes de novo lipogenesis in adipocytes. Mol Cell. 2019;76(5):811–25. doi: 10.1016/j.molcel.2019.09.011.
Xu S, Xi J, Wu T, Wang Z. The role of adipocyte endoplasmic reticulum stress in obese adipose tissue dysfunction: A review. Int J Gen Med. 2023;16:4405-18. doi: 10.2147/IJGM.S428482.
Han J, Kaufman RJ. Measurement of the unfolded protein response to investigate its role in adipogenesis and obesity. Methods Enzymol. 2014;538:135–50. doi: 10.1016/B978-0-12-800280-3.00008-6.
Altomonte J, Harbaran S, Richter A, Dong H. Fat depot-specific expression of adiponectin is impaired in Zucker fatty rats. Metabolism. 2003;52(8):958–63. doi: 10.1016/S0026-0495(03)00092-1.
Torre Villalvazo I, Bunt AE, Alemán G, Marquez-Mota CC, Diaz-Villaseñor A, Noriega LG, et al. Adiponectin synthesis and secretion by subcutaneous adipose tissue is impaired during obesity by endoplasmic reticulum stress. J Cell Biochem. 2018;119(7):5970–84. doi: 10.1002/jcb.26794.
Sugiyama M, Takahashi H, Hosono K, Endo H, Kato S, Yoneda K, et al. Adiponectin inhibits colorectal cancer cell growth through the AMPK/mTOR pathway. Int J Oncol. 2009;34(2):339-44. doi: 10.3892/ijo_00000156
Otake S, Takeda H, Fujishima S, Fukui T, Orii T, Sato T, et al. Decreased levels of plasma adiponectin associated with increased risk of colorectal cancer. World J Gastroenterol. 2010;16(10):1252-7. doi: 10.3748/wjg.v16.i10.1252
Otake S, Takeda H, Suzuki Y, Fukui T, Watanabe S, Ishihama K, et al. Association of visceral fat accumulation and plasma adiponectin with colorectal adenoma: evidence for participation of insulin resistance. Clin Cancer Res. 2005;11(10):3642-6. doi: 10.1158/1078-0432.CCR-04-1868.
Lukanova A, Söderberg S, Kaaks R, Jellum E, Stattin P. Serum adiponectin is not associated with the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2006;15(2):401-2. doi: 10.1158/1055-9965.EPI-05-0836.
Wei EK, Giovannucci E, Fuchs CS, Willett WC, Mantzoros CS. Low plasma adiponectin levels and the risk of colorectal cancer in men: a prospective study. J Natl Cancer Inst. 2005;97(22):1688-94. doi: 10.1093/jnci/dji376.
Siegel AB, Goyal A, Salomao M, Wang S, Lee V, Hsu C, et al. Serum adiponectin is associated with worsened overall survival in a prospective cohort of hepatocellular carcinoma patients. Oncology. 2015;88(1):57–68. doi: 10.1159/000367971.
Lee CH, Lui DT, Cheung CY, Fong CH, Yuen MM, Chow WS, et al. Higher circulating adiponectin concentrations predict incident cancer in type 2 diabetes–The adiponectin paradox. J Clin Endocrinol Metab. 2020;105(4):e1387-96. doi: 10.1210/clinem/dgaa075.
Chen CL, Yang WS, Yang HI, Chen CF, You SL, Wang LY, et al. Plasma adipokines and risk of hepatocellular carcinoma in chronic hepatitis B virus-infected carriers: a prospective study in Taiwan. Cancer Epidemiol Biomarkers Prev. 2014;23(8):1659–71. doi: 10.1158/1055-9965.EPI-14-0161.
Tietge UJ, Boker KH, Manns MP, Bahr MJ. Elevated circulating adiponectin levels in liver cirrhosis are associated with reduced liver function and altered hepatic hemodynamics. Am J Physiol Endocrinol Metab. 2004;287(1):E82–9. doi: 10.1152/ajpendo.00494.2003.
Kalkman HO. An explanation for the adiponectin paradox. Pharmaceuticals (Basel). 2021;14(12):1266. doi: 10.3390/ph14121266.
Wang ZV, Scherer PE. Adiponectin, the past two decades. J Mol Cell Biol. 2016;8(2):93–100. doi: 10.1093/jmcb/mjw011.
Hug C, Wang J, Ahmad NS, Bogan JS, Tsao TS, Lodish HF. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci USA. 2004;101(28):10308–13. doi: 10.1073/pnas.0403382101.
Straub LG, Scherer PE. Metabolic messengers: Adiponectin. Nat Metab. 2019;1(3):334–9. doi: 10.1038/s42255-019-0041-z.
Denzel MS, Scimia MC, Zumstein PM, Walsh K, Ruiz-Lozano P, Ranscht B. T-cadherin is critical for adiponectin-mediated cardioprotection in mice. J Clin Invest. 2010;120(12):4342–52. doi: 10.1172/JCI43464.
Matsuda K, Fujishima Y, Maeda N, Mori T, Hirata A, Sekimoto R, et al. Positive feedback regulation between adiponectin and T-cadherin impacts adiponectin levels in tissue and plasma of male mice. Endocrinology. 2015;156(3):934–46. doi: 10.1210/en.2014-1618.
Ivanov D, Philippova M, Antropova J, Gubaeva F, Iljinskaya O, Tararak E, et al. Expression of cell adhesion molecule T-cadherin in the human vasculature. Histochem Cell Biol. 2001;115(3):231–42. doi: 10.1007/s004180100252.
Parker-Duffen JL, Nakamura K, Silver M, Kikuchi R, Tigges U, Yoshida S, et al. T-cadherin is essential for adiponectin-mediated revascularization. J Biol Chem. 2013;288(34):24886–97. doi: 10.1074/jbc.M113.454835.
Fujishima Y, Maeda N, Matsuda K, Masuda S, Mori T, Fukuda S, et al. Adiponectin association with T-cadherin protects against neointima proliferation and atherosclerosis. FASEB J. 2017;31(4):1571–83. doi: 10.1096/fj.201601064R.