Scientific Online Resource System

Scripta Scientifica Vox Studentium

Tissue-Engineered Poly(Vinyl Alcohol) Mesh Prospects in Abdominal Hernia Treatment

Constantinos Voniatis, Daniella Fehér, Kristóf Molnár, Gyorgy Weber, Angéla Jedlovszky-Hajdú

Abstract

Introduction: As one of the most frequent disorders treated in general surgery, treatment of hernias has evolved throughout the years with the current first-choice treatment being hernioplasty via a laparoscopic or open-surgery approach. Currently applied non-biodegradable surgical meshes may cause complications more often than expected. The aim of our research was the synthesis and production of a biocompatible, biodegradable surgical mesh that could serve as a potential candidate for abdominal hernia repair.

Materials and Methods: Nanofabricated poly (vinyl alcohol) (PVA) scaffolds were produced via electrospinning from a mixture of PVA and glutaraldehyde (GDA) solutions. Post electrospinning processing included folding, compression and cross-linkage formation via scaffold immersion in HCl solution. Samples were sterilized with ClO2 then stored in PBS at 37 C. The mechanical properties were assessed by an Instron 5942, in different setups recreating surgical conditions. In vivo examination was performed on Wistar Rats (n=45), which were randomly sorted into three groups of 15 animals each. In Group I and II, an artificial abdominal defect (2 x 2 cm) was created then PVA meshes (D: 2.5 cm) were used to repair it. Group III was a control group where only an incision on the skin and muscle was made. Animals were terminated after the 7th, 14th, 28th, 90th and 180th postoperative days. Implants were evaluated macroscopically and microscopically.

Results: All animals survived until termination date. Upon inspection, no signs of infection or other adverse reaction were found in the environment of the scaffolds. Adhesion formation was found along the suture line rather than the PVA scaffold itself proving its biocompatibility. Histological examination revealed that the meshes were integrated to the host tissue and kept their structure.

Conclusion: Our positive results reinforced that a PVA nanofabricated mesh is biocompatible and could be a viable candidate in treatment of abdominal hernias in the future.


Keywords

abdominal hernia, nanotechnology, tissue-engineering, poly(vinyl alcohol)




DOI: http://dx.doi.org/10.14748/ssvs.v1i1.2670

Refbacks

Font Size


|