Scientific Online Resource System

Varna Medical Forum

Animal models of skin wound healing – advantages and disadvantages

Minka Hristova

Abstract

Skin wounds represent superficial or deep destructions of the skin, which occur as a result of Skin wounds represent superficial or deep destructions of the skin, which occur as a result of various external influences or surgical interventions. Immediately after the injury, a series of pathophysiological processes begin, aimed at restoring tissue integrity. Wound healing is a process involving interconnected and overlapping stages of hemostasis, inflammation, proliferation, and tissue remodeling. Numerous cellular populations, the extracellular matrix, and soluble mediators are also involved. Abnormalities in the healing process can result from systemic diseases and may lead to serious complications for the individual. Despite medical advancements, wound healing remains a significant clinical challenge, necessitating proper and effective treatment. In addition to improving traditional wound care, it is essential to develop new therapeutic approaches. Experimental models are a very useful tool for studying various diseases. Over the past decades, different skin injury models have been developed, which increase our knowledge of tissue recovery processes and contribute to the development of new clinically relevant therapeutic strategies. This review summarizes the processes of skin wound healing and discusses the most commonly used animal models. Differences in the healing process and in the in vivo skin wound models are analyzed in detail.


Keywords

skin wounds, wound healing, in vivo models, mouse, rat, rabbit, pig

Full Text


References

Abdullahi A, Amini-Nik S, Jeschke MG. Animal models in burn research. Cell Mol Life Sci. 2014 Sep;71(17):3241-55. doi: 10.1007/s00018-014-1612-5. Epub 2014 Apr 9. PMID: 24714880; PMCID: PMC4134422.

Abu Bakar N, Mydin RBSMN, Yusop N, Matmin J, Ghazalli NF. Understanding the ideal wound healing mechanistic behavior using in silico modelling perspectives: A review. J Tissue Viability. 2024 Feb;33(1):104-115. doi: 10.1016/j.jtv.2023.11.001. Epub 2023 Nov 10. PMID: 38092620.

Acevedo CA, Sánchez E, Orellana N, Morales P, Olguín Y, Brown DI, et al. Re-Epithelialization Appraisal of Skin Wound in a Porcine Model Using a Salmon-Gelatin Based Biomaterial as Wound Dressing. Pharmaceutics. 2019 Apr 26;11(5):196. doi: 10.3390/pharmaceutics11050196. PMID: 31027353; PMCID: PMC6571591.

Al-Tawarah NM. Singular and combined healing activity of aqueous extract of Artemisia jordanica and Achillea fragrantissima in rabbit’s incision, excision and burn models. Biomed Pharmacol J. 2022;15(3).

Alvarez M, Chávez MN, Miranda M, Aedo G, Allende ML, Egaña JT. A novel in vivo model to study impaired tissue regeneration mediated by cigarette smoke. Sci Rep. 2018;8. doi: 10.1038/s41598-018-28687-1.

Ataide JA, Zanchetta B, Santos ÉM, Fava ALM, Alves TFR, Cefali LC, et al. Nanotechnology-Based Dressings for Wound Management. Pharmaceuticals (Basel). 2022 Oct 19;15(10):1286. doi: 10.3390/ph15101286. PMID: 36297398; PMCID: PMC9611303.

Aulia I, Bangun K. Comparison tensile strength and histopathological evaluation of wound healing process using adhesive skin tapes on laceration wounds of porcine skin. J Phys Conf Ser. 2018 Dec;1073(3):032038. doi: 10.1088/1742-6596/1073/3/032038.

Balachandran A, Choi SB, Beata MM, Małgorzata J, Froemming GRA, Lavilla CA Jr, et al. Antioxidant, Wound Healing Potential and In Silico Assessment of Naringin, Eicosane and Octacosane. Molecules. 2023 Jan 20;28(3):1043. doi: 10.3390/molecules28031043. PMID: 36770709; PMCID: PMC9919607.

Barakat M, DiPietro LA, Chen L. Limited Treatment Options for Diabetic Wounds: Barriers to Clinical Translation Despite Therapeutic Success in Murine Models. Advances in Wound Care. 2021 Aug;10(8):436-460. DOI: 10.1089/wound.2020.1254. PMID: 33050829; PMCID: PMC8236303.

Bellare A, Epperly MW, Greenberger JS, Fisher R, Glowacki J. Development of tensile strength methodology for murine skin wound healing. MethodsX. 2018 Apr 16;5:337-344. doi: 10.1016/j.mex.2018.04.002. PMID: 30050753; PMCID: PMC6058076.

Bhatia A, O'Brien K, Chen M, Woodley DT, Li W. Keratinocyte-Secreted Heat Shock Protein-90alpha: Leading Wound Reepithelialization and Closure. Adv Wound Care (New Rochelle). 2016 Apr 1;5(4):176-184. doi: 10.1089/wound.2014.0620. PMID: 27076995; PMCID: PMC4817596.

Bowers S, Franco E. Chronic Wounds: Evaluation and Management. Am Fam Physician. 2020 Feb 1;101(3):159-166. PMID: 32003952.

Bradley DM, Swaim SF, Stuart S. An animal model for research on wound healing over exposed bone. Vet Comp Orthop Traumatol. 1998;11:131-5. doi: 10.1055/s-0038-1632534.

Carlson MA, Chakkalakal D. Tensile properties of the murine ventral vertical midline incision. PLoS One. 2011;6(9):e24212. doi: 10.1371/journal.pone.0024212. Epub 2011 Sep 7. PMID: 21915298; PMCID: PMC3168469.

Carvalho-Júnior JDC, Zanata F, Aloise AC, Ferreira LM. Acellular dermal matrix in skin wound healing in rabbits - histological and histomorphometric analyses. Clinics (Sao Paulo). 2021 Mar 8;76:e2066. doi: 10.6061/clinics/2021/e2066. PMID: 33681941; PMCID: PMC7920408.

Casadiego O, Macias O, García L, Sanabria-Chanaga E, Baay-Guzmán GJ, Mantilla JC, et al. In-Silico Selection of Wound-Healing Plant Secondary Molecules and Their Pro-Healing Activities on Experimental Models. Chem Biodivers. 2023 Dec;20(12):e202300961. doi: 10.1002/cbdv.202300961. Epub 2023 Nov 22. PMID: 37966104.

Chhabra S, Chhabra N, Kaur A, Gupta N. Wound Healing Concepts in Clinical Practice of OMFS. J Maxillofac Oral Surg. 2017 Dec;16(4):403-423. doi: 10.1007/s12663-016-0880-z. Epub 2016 Mar 5. PMID: 29038623; PMCID: PMC5628060.

Chien S, Wilhelmi BJ. A simplified technique for producing an ischemic wound model. J Vis Exp. 2012 May 2;(63):e3341. doi: 10.3791/3341. PMID: 22588601; PMCID: PMC3468189.

Cioce A, Cavani A, Cattani C, Scopelliti F. Role of the Skin Immune System in Wound Healing. Cells. 2024 Apr 4;13(7):624. doi: 10.3390/cells13070624. PMID: 38607063; PMCID: PMC11011555.

Couturier A, Calissi C, Cracowski JL, Sigaudo-Roussel D, Khouri C, Roustit M. Mouse models of diabetes-related ulcers: a systematic review and network meta-analysis. EBioMedicine. 2023 Dec;98:104856. doi: 10.1016/j.ebiom.2023.104856. Epub 2023 Oct 31. PMID: 38251464; PMCID: PMC10755106.

Crane MJ, Henry WL Jr, Tran HL, Albina JE, Jamieson AM. Assessment of Acute Wound Healing using the Dorsal Subcutaneous Polyvinyl Alcohol Sponge Implantation and Excisional Tail Skin Wound Models. J Vis Exp. 2020 Mar 25;(157):10.3791/60653. doi: 10.3791/60653. PMID: 32281981; PMCID: PMC7281859.

Crane MJ, Xu Y, Monaghan SF, Hall BM, Albina JE, Henry WL, et al. Pulmonary infection interrupts acute cutaneous wound healing through disruption of chemokine signals. J Immunol. 2021 May 1;206(1_Supplement):110.06. doi: 10.4049/jimmunol.206.Supp.110.06.

Dai T, Kharkwal GB, Tanaka M, Huang YY, Bil de Arce VJ, Hamblin MR. Animal models of external traumatic wound infections. Virulence. 2011 Jul-Aug;2(4):296-315. doi: 10.4161/viru.2.4.16840. Epub 2011 Jul 1. PMID: 21701256; PMCID: PMC3173676.

Dorsett-Martin WA. Rat models of skin wound healing: a review. Wound Repair Regen. 2004 Nov-Dec;12(6):591-9. doi: 10.1111/j.1067-1927.2004.12601.x. PMID: 15555049.

Dwivedi D, Dwivedi M, Malviya S, Singh V. Evaluation of wound healing, anti-microbial and antioxidant potential of Pongamia pinnata in wistar rats. J Tradit Complement Med. 2016 Apr 4;7(1):79-85. doi: 10.1016/j.jtcme.2015.12.002. PMID: 28053891; PMCID: PMC5198820.

Ejaz S, Lim CW. Impaired wound healing by exposure of different mainstream whole smoke solutions of commercial cigarettes. Environ Toxicol Pharmacol. 2006 May;21(3):290-300. doi: 10.1016/j.etap.2005.09.007. Epub 2005 Nov 23. PMID: 21783671.

Encarnação R, Manuel T, Palheira H, Neves-Amado J, Alves P. Artificial Intelligence in Wound Care Education: Protocol for a Scoping Review. Nurs Rep. 2024 Mar 14;14(1):627-640. doi: 10.3390/nursrep14010048. PMID: 38535720; PMCID: PMC10975757.

Ericsson AC, Crim MJ, Franklin CL. A brief history of animal modeling. Mo Med. 2013 May-Jun;110(3):201-5. PMID: 23829102; PMCID: PMC3979591.

Eyarefe DO, Kuforiji DI, Jarikre TA, Emikpe BO. Enhanced electroscalpel incisional wound healing potential of honey in wistar rats. Int J Vet Sci Med. 2017 Nov 13;5(2):128-134. doi: 10.1016/j.ijvsm.2017.10.002. PMID: 30255061; PMCID: PMC6137850.

Falanga V, Schrayer D, Cha J, Butmarc J, Carson P, Roberts AB, et al. Full-thickness wounding of the mouse tail as a model for delayed wound healing: accelerated wound closure in Smad3 knock-out mice. Wound Repair Regen. 2004 May-Jun;12(3):320-6. doi: 10.1111/j.1067-1927.2004.012316.x. PMID: 15225210.

Fathi F, Ghobeh M, Shirazi FH, Tabarzad M. Promising anti-inflammatory activity of a novel designed anti-microbial peptide for wound healing. Burns. 2024 Nov;50(8):2045-2055. doi: 10.1016/j.burns.2024.07.036. Epub 2024 Jul 31. PMID: 39181772.

Gadgoli CH. Research in phyto-constituents for treatment of wounds [Internet]. Worldwide Wound Healing - Innovation in Natural and Conventional Methods. InTech; 2016 [cited 2025 Jan 8]. Available from: http://dx.doi.org/10.5772/65485

Gál P, Toporcer T, Vidinský B, Mokrý M, Novotný M, Kilík R, et al. Early changes in the tensile strength and morphology of primary sutured skin wounds in rats. Folia Biol (Praha). 2006;52(4):109-15. PMID: 17116282.

Gawronska-Kozak B, Bogacki M, Rim JS, Monroe WT, Manuel JA. Scarless skin repair in immunodeficient mice. Wound Repair Regen. 2006 May-Jun;14(3):265-76. doi: 10.1111/j.1743-6109.2006.00121.x. PMID: 16808805.

Gökkaya A, Görgü M, Kızılkan J, Karanfil E, Doğan A. The measurement of wound tensile strength and the effect of PRP on wound tensile force: an experimental investigation on rabbits. J Plast Surg Hand Surg. 2021;56(1):38–46. doi: 10.1080/2000656X.2021.1914637.

Grada A, Mervis J, Falanga V. Research Techniques Made Simple: Animal Models of Wound Healing. J Invest Dermatol. 2018 Oct;138(10):2095-2105.e1. doi: 10.1016/j.jid.2018.08.005. PMID: 30244718.

Grice EA, Segre JA. Interaction of the microbiome with the innate immune response in chronic wounds. Adv Exp Med Biol. 2012;946:55-68. doi: 10.1007/978-1-4614-0106-3_4. PMID: 21948362; PMCID: PMC3516280.

Gushiken LFS, Beserra FP, Bastos JK, Jackson CJ, Pellizzon CH. Cutaneous Wound Healing: An Update from Physiopathology to Current Therapies. Life (Basel). 2021 Jul 7;11(7):665. doi: 10.3390/life11070665. PMID: 34357037; PMCID: PMC8307436.

Hofmann E, Fink J, Pignet AL, Schwarz A, Schellnegger M, Nischwitz SP, et al. Human in vitro skin models for wound healing and wound healing disorders. Biomedicines. 2023 Mar 30;11(4):1056. doi: 10.3390/biomedicines11041056. PMID: 37189674; PMCID: PMC10135654.

Jiang Y, Trotsyuk AA, Niu S, Henn D, Chen K, Shih CC, et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat Biotechnol. 2023 May;41(5):652–62. doi: 10.1038/s41587-022-01528-3. Epub 2022 Nov 24. PMID: 36424488.

João De Masi EC, Campos AC, João De Masi FD, Ratti MA, Ike IS, João De Masi RD. The influence of growth factors on skin wound healing in rats. Braz J Otorhinolaryngol. 2016 Sep-Oct;82(5):512-21. doi: 10.1016/j.bjorl.2015.09.011. Epub 2016 Jan 7. PMID: 26832633; PMCID: PMC9444624.

Karner L, Drechsler S, Metzger M, Slezak P, Zipperle J, Pinar G, et al. Contamination of wounds with fecal bacteria in immuno-suppressed mice. Sci Rep. 2020;10(1):11494. doi: 10.1038/s41598-020-68323-5.

Khiste SV, Ranganath V, Nichani AS. Evaluation of tensile strength of surgical synthetic absorbable suture materials: an in vitro study. J Periodontal Implant Sci. 2013 Jun;43(3):130-5. doi: 10.5051/jpis.2013.43.3.130. Epub 2013 Jun 30. PMID: 23837127; PMCID: PMC3701834.

Kondej K, Zawrzykraj M, Czerwiec K, Deptuła M, Tymińska A, Pikuła M. Bioengineering skin substitutes for wound management—perspectives and challenges. Int J Mol Sci. 2024 Mar 26;25(7):3702. doi: 10.3390/ijms25073702. PMID: 38612513; PMCID: PMC11011330.

Kuo TY, Huang CC, Shieh SJ, Wang YB, Lin MJ, Wu MC, et al. Skin wound healing assessment via an optimized wound array model in miniature pigs. Sci Rep. 2022 Jan 10;12(1):445. doi: 10.1038/s41598-021-03855-y. PMID: 35013386; PMCID: PMC8748672.

Lan CC, Wu CS, Huang SM, Wu IH, Chen GS. High-glucose environment enhanced oxidative stress and increased interleukin-8 secretion from keratinocytes: new insights into impaired diabetic wound healing. Diabetes. 2013 Jul;62(7):2530–8. doi: 10.2337/db12-1683. PMID: 23610064.

Le Gall M, Serantoni V, Louche H, Jourdan F, Sigaudo-Roussel D, Bonod C, et al. Monolayer graphene-on-polymer dressings promote healing and stabilize skin temperature on acute and chronic wound models. bioRxiv. 2021.05.16.444337 [Preprint]. doi: 10.1101/2021.05.16.444337. [cited 2025 Jan 8].

Lou D, Luo Y, Pang Q, Tan WQ, Ma L. Gene-activated dermal equivalents to accelerate healing of diabetic chronic wounds by regulating inflammation and promoting angiogenesis. Bioact Mater. 2020 May 8;5(3):667-679. doi: 10.1016/j.bioactmat.2020.04.018. PMID: 32420517; PMCID: PMC7217806.

Marti S, Schwartzkopf-Genswein KS, Janzen ED, Meléndez DM, Gellatly D, Pajor EA. Use of topical healing agents on scrotal wounds after surgical castration in weaned beef calves. Can Vet J. 2017 Oct;58(10):1081-1085. PMID: 28966358; PMCID: PMC5603928.

Masson-Meyers DS, Andrade TAM, Caetano GF, Guimaraes FR, Leite MN, Leite SN, et al. Experimental models and methods for cutaneous wound healing assessment. Int J Exp Pathol. 2020 Feb;101(1-2):21-37. doi: 10.1111/iep.12346. Epub 2020 Mar 30. PMID: 32227524; PMCID: PMC7306904.

Mirnezami M, Rahimi H, Fakhar HE, Rezaei K. The role of topical estrogen, phenytoin, and silver sulfadiazine in time to wound healing in rats. Ostomy Wound Manage. 2018 Aug;64(8):30–4.

Monika P, Chandraprabha MN, Rangarajan A, Waiker PV, Chidambara Murthy KN. Challenges in Healing Wound: Role of Complementary and Alternative Medicine. Front Nutr. 2022 Jan 20;8:791899. doi: 10.3389/fnut.2021.791899. PMID: 35127787; PMCID: PMC8811258.

Mulisa E, Asres K, Engidawork E. Evaluation of wound healing and anti-inflammatory activity of the rhizomes of Rumex abyssinicus J. (Polygonaceae) in mice. BMC Complement Altern Med. 2015 Sep 30;15:341. doi: 10.1186/s12906-015-0878-y. PMID: 26423525; PMCID: PMC4589968.

Nagle SM, Stevens KA, Wilbraham SC. Wound assessment. [Updated 2023 Jun 26]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–. [cited 2025 Jan 8]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482198/.

Opalenik SR, Davidson JM. Fibroblast differentiation of bone marrow-derived cells during wound repair. FASEB J. 2005 Sep;19(11):1561–3. doi: 10.1096/fj.04-2978fje. Epub 2005 Jul 12. PMID: 16014399.

Opneja A, Kapoor S, Stavrou EX. Contribution of platelets, the coagulation and fibrinolytic systems to cutaneous wound healing. Thromb Res. 2019 Jul;179:56–63. doi: 10.1016/j.thromres.2019.05.001. Epub 2019 May 2. PMID: 31078121; PMCID: PMC6556139.

Pandey M, Worlikar PS, Ghosh A, Bondekar AA, Chetan S. Comparison of wound healing activity of Jethimadh with Triphala in rats. Int J Health Allied Sci. 2012 Apr-Jun;1(2):59–63. doi: 10.4103/2278-344X.101665.

Pelizzo G, Avanzini MA, Icaro Cornaglia A, Osti M, Romano P, Avolio L, et al. Mesenchymal stromal cells for cutaneous wound healing in a rabbit model: pre-clinical study applicable in the pediatric surgical setting. J Transl Med. 2015 Jul 8;13:219. doi: 10.1186/s12967-015-0580-3. PMID: 26152232; PMCID: PMC4495634.

Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49(1):35–43. doi: 10.1159/000339613. Epub 2012 Jul 11. PMID: 22797712.

Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019 Jan 1;99(1):665–706. doi: 10.1152/physrev.00067.2017. PMID: 30475656; PMCID: PMC6442927.

Rouhollahi E, Moghadamtousi SZ, Hajiaghaalipour F, Zahedifard M, Tayeby F, Awang K, et al. Curcuma purpurascens BI. rhizome accelerates rat excisional wound healing: involvement of Hsp70/Bax proteins, antioxidant defense, and angiogenesis activity. Drug Des Devel Ther. 2015 Oct 27;9:5805-13. doi: 10.2147/DDDT.S88196. PMID: 26604683; PMCID: PMC4629958.

Rowland MB, Moore PE, Bui C, Correll RN. Assessing wound closure in mice using skin-punch biopsy. STAR Protoc. 2023 Mar 17;4(1):101989. doi: 10.1016/j.xpro.2022.101989. Epub 2023 Jan 4. PMID: 36602903; PMCID: PMC9826969.

Roy P, Amdekar S, Kumar A, Singh R, Sharma P, Singh V. In vivo antioxidative property, antimicrobial and wound healing activity of flower extracts of Pyrostegia venusta (Ker Gawl) Miers. J Ethnopharmacol. 2012 Mar 6;140(1):186–92. doi: 10.1016/j.jep.2012.01.008. Epub 2012 Jan 14. PMID: 22265749.

Sami DG, Heiba HH, Abdellatif A. Wound healing models: A systematic review of animal and non-animal models. Wound Med. 2018;24:8–17. doi: 10.1016/j.wndm.2018.12.001.

Sanapalli BKR, Yele V, Singh MK, Thaggikuppe Krishnamurthy P, Karri VVSR. Preclinical models of diabetic wound healing: A critical review. Biomed Pharmacother. 2021 Oct;142:111946. doi: 10.1016/j.biopha.2021.111946. Epub 2021 Jul 30. PMID: 34339915.

Sánchez M, Serrano L. History of animal experimentation and animal rights [Internet]. 2021 Jun 8. Available from: https://beonchip.com/animal-rights-history.

Schultz GS, Chin GA, Moldawer L, et al. Principles of wound healing. In: Fitridge R, Thompson M, editors. Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists [Internet]. Adelaide (AU): University of Adelaide Press; 2011. p. 23. Available from: https://www.ncbi.nlm.nih.gov/books/NBK534261/.

Sen CK. Human wound and its burden: Updated 2020 compendium of estimates. Adv Wound Care (New Rochelle). 2021 May;10(5):281–92. doi: 10.1089/wound.2021.0026. PMID: 33733885; PMCID: PMC8024242.

Sharun K, Banu SA, Mamachan M, Subash A, Karikalan M, Kumar R, et al. Development and characterization of contraction-suppressed full-thickness skin wound model in rabbits. Tissue Cell. 2024 Oct;90:102482. doi: 10.1016/j.tice.2024.102482. Epub 2024 Jul 22. PMID: 39059133.

Singer AJ. Healing Mechanisms in Cutaneous Wounds: Tipping the Balance. Tissue Eng Part B Rev. 2022 Oct;28(5):1151-1167. doi: 10.1089/ten.TEB.2021.0114. Epub 2022 Mar 11. PMID: 34915757; PMCID: PMC9587785.

Sotirova Y, Kiselova-Kaneva Y, Vankova D, Tasinov O, Ivanova D, Popov H, et al. Tissue Regeneration and Remodeling in Rat Models after Application of Hypericum perforatum L. Extract-Loaded Bigels. Gels. 2024 May 17;10(5):341. doi: 10.3390/gels10050341. PMID: 38786258; PMCID: PMC11121646.

Stamm J, Cooney RN, Maish GO, Shumate ML, Lang CH, Ehrlich HP, et al. Growth hormone does not attenuate the inhibitory effects of sepsis on wound healing. Wound Repair Regen. 2000 Mar-Apr;8(2):103-9. doi: 10.1046/j.1524-475x.2000.00103.x. PMID: 10810036.

Stefanov S, Stoeva S, Georgieva S, Hristova M, Nikolova K, Dobreva M, et al. In vivo comparative assessment of incised wound healing in rats after application of hydrogel/organogel formulation containing St. John’s wort methanol extract. Bulg. Chem. Commun. 2022, 54, 46–51.

Stefanov SR, Andonova VY. Lipid Nanoparticulate Drug Delivery Systems: Recent Advances in the Treatment of Skin Disorders. Pharmaceuticals (Basel). 2021 Oct 26;14(11):1083. doi: 10.3390/ph14111083. PMID: 34832865; PMCID: PMC8619682.

Su C, Chen J, Xie X, Gao Z, Guan Z, Mo X, et al. Functionalized Electrospun Double-Layer Nanofibrous Scaffold for Wound Healing and Scar Inhibition. ACS Omega. 2022 Aug 18;7(34):30137-30148. doi: 10.1021/acsomega.2c03222. PMID: 36061738; PMCID: PMC9435051.

Sulakhiya K, Soni P, Tembhre MK, Kungumaraj HJ, Paliwal R, Kumar S. 2 - Physiology and pharmacology of wounds. In: Solanki PR, Kumar A, Singh RP, Singh J, Singh KRB, editors. Nanotechnological Aspects for Next-Generation Wound Management. Academic Press; 2024. p. 21-54, ISBN 9780323991650, https://doi.org/10.1016/B978-0-323-99165-0.00011-3. (https://www.sciencedirect.com/science/article/pii/B9780323991650000113)

Süntar I, Akkol EK, Keleş H, Oktem A, Başer KH, Yeşilada E. A novel wound healing ointment: a formulation of Hypericum perforatum oil and sage and oregano essential oils based on traditional Turkish knowledge. J Ethnopharmacol. 2011 Mar 8;134(1):89-96. doi: 10.1016/j.jep.2010.11.061. Epub 2010 Dec 3. PMID: 21130859.

Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res. 2009 Sep-Oct;37(5):1528-42. doi: 10.1177/147323000903700531. PMID: 19930861.

Wan Y, Wang X, Yang L, Li Q, Zheng X, Bai T, et al. Antibacterial Activity of Juglone Revealed in a Wound Model of Staphylococcus aureus Infection. Int J Mol Sci. 2023 Feb 15;24(4):3931. doi: 10.3390/ijms24043931. PMID: 36835350; PMCID: PMC9963570.

Wang G, Yang F, Zhou W, Xiao N, Luo M, Tang Z. The initiation of oxidative stress and therapeutic strategies in wound healing. Biomed Pharmacother. 2023 Jan;157:114004. doi: 10.1016/j.biopha.2022.114004. Epub 2022 Nov 11. PMID: 36375308.

Yang Y, Xie W, Li S, Sun X, Yu B, Fu H, et al. Splint-free line drawing model: An innovative method for excisional wound models. Int Wound J. 2023 Sep;20(7):2673-2678. doi: 10.1111/iwj.14141. Epub 2023 Mar 5. PMID: 36872305; PMCID: PMC10410311.

Zhou S, Xie M, Su J, Cai B, Li J, Zhang K. New insights into balancing wound healing and scarless skin repair. J Tissue Eng. 2023 Jul 27;14:20417314231185848. doi: 10.1177/20417314231185848. PMID: 37529248; PMCID: PMC10388637.




DOI: http://dx.doi.org/10.14748/vmf.v14i1.10077

Refbacks

Font Size


|