Scientific Online Resource System

Varna Medical Forum

Antimicrobial Peptides (Amps) - A Potential Solution Against Microbial Resistance

Dimana Dimitrova, Momchil Lambev, Antonia Hristova, Silvia Mihaylova, Stefka Valcheva-Kuzmanova, Tamara Pajpanova

Abstract

After introducing them for the first time in the 1950s, antibiotics have been used extensively for the treatment of microbial infections. Many of the bacteria, however, have become resistant to the antibiotics used in the clinic, which has led to the need for new agents to control pathogenic microorganisms. Since most living organisms have a close molecular structure, it is difficult to find substances that are lethal to certain species and are safe for others.

Antimicrobial peptides (AMPs) have received special attention as a possible alternative approach to fighting infections caused by antibiotic-resistant bacterial strains. They were introduced as a single group of biologically active substances in the late 1970s and early 1980s. To date, the group is presented by 2500 to 6000 oligopeptides with a size between 10 and 80 amino acid residues, with a predominantly spiral structure. AMPs are positively charged, amphipathic structures of great variety and without a significant molecular length. They exhibit a broad spectrum of antimicrobial activity against Gram-positive and Gram-negative bacteria, viruses and parasites over a wide range of pH and temperatures. In nature they represent an important part of the innate immune protection of animals and insects. It is thought that they even replace the immune response in the lower organisms – an example of this are the isolated cecropins, defensins and maggenes.

AMPs perform a rapid bactericidal effect (in vitro – within minutes). In recent years they have been identified as "natural antibiotics". This review is focused on the classification of AMPs, their antimicrobial activity and mechanism of action.

Keywords

antimicrobial peptides, microbial resistance, antibacterial therapy, natural antibiotics

Full Text


References

Baek J, Lee S. Isolation and molecular cloning of venom peptides fromOrancistrocerusdrewseni (Hymenoptera: Eumenidae). Toxicon 2010; Apr 1;55(4):711-8.

Baumann G,Paul M. A molecular model of membrane excitability,Journal of Supramolecular Structure.1974; 2:529-537.

Brown S, Howard A, Kasprzak A, Gordon K, East P. A peptidomics studyreveals the impressive antimicrobial peptide arsenal of the wax moth Galleriamellonella. Insect Biochem Mol Biol. 2009; Nov;39(11):792-800.

Bulet P, Stocklin R. Insect antimicrobial peptides: structures, properties andgene regulation. Protein Pept Lett. 2005; Jan;12(1):3-11.

Carnicelli V, Lizzi A, Ponzi A, Amicosante G, Bozzi A, Giulio A. Interaction between antimicrobial peptides (AMPs) and their primary target, the biomembranes. Microbial pathogens and strategies for combating them: science, technology and education (A. Méndez-Vilas, Ed.). 2013; pp.1123 -1134.

Chapuisat M, Oppliger A, Magliano P, Christe P. Wood ants use resin to protect

themselves against pathogens. Proc Biol Sci. 2007; v.274(1621).

Charroux B, Rival T, Narbonne-Reveau K, Royet J. Bacterial detection by Drosophila peptidoglycan recognition proteins. Microbes Infect. 2009; 11(6-7):631-6.

Chen YQ, Zhang SQ, Li BC, Qiu W, Jiao B, Zhang J, et al. Expression of a cytotoxic cationic antibacterial peptide in Escherichia coli using two fusion partners.Protein Expr Purif.2008; 57(2):303-311.

Cohen L, Moran Y, Sharon A, Segal D, Gordon D, Gurevitz M. Drosomycin, aninnate immunity peptide of Drosophila melanogaster, interacts with the flyvoltage-gated sodium channel. J Biol Chem. 2009; Aug 28;284(35):23558-63.

Dang XL, Tian JH, Yang WY, Wang WX, Ishibashi J, Asaoka A, et al. Bactrocerin-1: a novel inducible antimicrobial peptide from pupae of oriental fruit fly Bactrocera dorsalis Hendel. Arch Insect Biochem Physiol. 2009; Jul 71(3):117-29.

Dнaz P, D’Suze G, Salazar V, Sevcik C, Shannon JD, Sherman NE, et al. Antibacterial activity of six novel peptides from Tityus discrepans scorpion venom. Afluorescent probe study of microbial membrane Na+ permeability changes.Toxicon.2009; Jun 54(6):802-817.

Gould I M, Bal A M. New Antibiotic Agents in the Pipeline and How They Can Help Overcome Microbial Resistance,2013; Feb 15 4(2): 185–191.

Guani-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Teran LM. Antimicrobial peptides: general overview and clinical implications in human health and disease.2010; Apr 135(1):1-11.

Hara T, Mitani Y, Tanaka K, Uematsu N, Takakura A, Tachi T, Kodama H, Kondo M, Mori H, Otaka A, Nobutaka F, Matsuzaki K. Heterodimer formation between the antimicrobial peptides magainin 2 and PGLa in lipid bilayers: a cross-linking study. Biochemistry. 2001; Oct 16 40(41):12395-9.

Hwang JS, Lee J, Kim YJ, Bang HS, Yun EY, Kim SR, et al. Isolation and characterization of a defensin-like peptide (Coprisin) from the dung beetle, Copristripartitus. Int J Pept 2009; ID 136284, 5 pages.

Hwang P, Vogel H. Structure-function relationships of antimicrobial peptides. Biochem. Cell Biol. 1998; 1998;76(2-3):235-46.

Imamura M, Wada S, Ueda K, Saito A, Koizumi N, Iwahana H, et al. Multipeptide precursor structure of acaloleptin A isoforms, antibacterial peptidesfrom the Udo longicorn beetle, Acalolepta luxuriosa. Dev Comp Immunol. 2009; 33 1120–1127.

Lee J , Yoonkyung P. Mechanism of Action of Antimicrobial Peptides Against Bacterial Membrane,2014; J Bacteriol Virol. 2014 Jun 44(2):140-151.

Lee SB, Li B, Jin S, Daniell H. Expression and characterization of antimicrobialpeptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral andbacterial infections. Plant Biotechnol J. 2011; Jan 9(1):100-15.

Lee VS, Tu WC, Jinn TR, Peng CC, Lin LJ, Tzen JT. Molecular cloning of the precursor polypeptide of mastoparan B and its putative processing enzyme, dipeptidyl peptidase IV, from the black-bellied hornet, Vespa basalis. Insect Mol Biol. 2007; Apr 16(2):231-7.

Leite JR, Silva LP, Rodrigues MI, Prates MV, Brand GD, Lacava BM, et al. Phylloseptins:a novel class of anti-bacterial and anti-protozoan peptides from the Phyllomedusa genus. Peptides. 2005; Apr 26(4):565-73.

Liu S, Wang F, Tang L, Gui W, Cao P, Liu X, et al. Crystal structure of mastoparan from Polistes jadwagae at 1.2A resolution. J Struct Biol. 2007; Oct 160(1):28-34.

María A, Aura L, Giovanni A, Jaiver E, Zuly J. Antibacterial Activity of Synthetic Peptides Derived from Lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212. BioMed Research International. 2015; 453826.

Maróti G, Kereszt A, Kondorosi E, Mergaert P. Natural roles of antimicrobial

peptides in microbes, plants and animals. Res Microbiol. 2011; May;162(4):363-74.

Matsuzaki K. Why and how are peptide-lipid interactions utilized for selfdefense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta. 1999; Dec 15 1462(1-2):1-10.

Niu M, Li X, Wei J, Cao R, Zhou B, Chen P. The molecular design of a recombinant antimicrobial peptide CP and its in vitro activity. Protein Expr Purif.2008; Jan 57(1):95-100, Epub 2007 Aug 24.

Romero R. Microbiología y parasitología humana bases etiológicas de las enfermedades infecciosas y parasitarias, Editorial Médica Panamericana, Buenos Aires, Argentina, 2007.

Rozek A, Friedrich CL, Hancock RE. Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry. 2000; Dec 26 39(51):15765-74.

Sansom MS. The biophysics of peptide models of ion channels. Prog. Biophys. Mol. Biol. 1991; 55 (3):139-235.

Scocchi M, Tossi A, Gennaro R. Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action. Cell Mol Life Sci. 2011; Jul 68(13):2317-30, Epub 2011 May 19.

Shai Y, Oren Z. From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides. 2001; Oct 22(10):1629-41.

Sitaram N, Nagaraj R. Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta. 1999; Dec 15 1462(1-2):29-54.

Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981; Jul 16 292(5820):246-8.

Tanaka H, Yamamoto M, Moriyama Y, Yamao M, Furukawa S, Sagisaka A,

et al. A novel Rel protein and shortened isoform that differentially regulate

antibacterial peptide genes in the silkworm Bombyx mori. Biochim Biophys

Acta. 2005; Jul 25 1730 (1):10-21.

Uematsu N, Matsuzaki K. Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study. Biophys J. 2000; Oct 79(4): 2075–2083.

Viljakainen L, Pamilo P, Selection on an antimicrobial peptide defensin in ants.

J Mol Evol. 2008; Dec 67(6):643-52.

Wang L, Li Z, Du C, Chen W, Pang Y. Characterization and expression of a cecropin-like gene from Helicoverpa armigera. Comp Biochem Physiol BBiochem Mol Biol. 2007; Dec 148(4):417-25.

Wang X, Zhu M, Zhang A, Yang F, Chen P. Synthesis and secretory expression of hybrid antimicrobial peptide CecA-mag and its mutants in Pichia pastoris.Exp Biol Med (Maywood). 2012; Mar 237(3):312-7.

Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J. 2001; Sep 81(3):1475-85.

Yang Р, Ramamoorthy A, Chen Z. Membrane Orientation of MSI-78 Measured by Sum Frequency Generation Vibrational Spectroscopy. Langmuir 2011; Jun 21 27(12): 7760–7767.

Yanmei L , Xiang Q, Zhang Q, Huang Y, Su Z. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. 2012; Oct 37(2):207-15.

Yoe SM, Kang CS, Han SS, Bang IS. Characterization and cDNA cloning of hinnavin II, a cecropin family antibacterial peptide from the cabbagebutterfly, Artogeia rapae. Comp Biochem Physiol B Biochem Mol Biol. 2006; Jun 144(2):199-205.

Zhu S, Gao B. A fossil antibacterial peptide gives clues to structural diversityof cathelicidin-derived host defense peptides. FASEB J 2009; 23 1230–1245.

Науменкова Т, Антонов М, Шайтан Константин В. Взаимодействие антимикробного пептида буфорина-2 с мембранами: роль пролиновой петли. Физико-математические науки. 2014.




DOI: http://dx.doi.org/10.14748/vmf.v7i0.6108

Refbacks

Font Size


|