Neufer PD, Bamman MM, Muoio DM, Bouchard C, Cooper
DM, Goodpaster BH, et al. Understanding the Cellular
and Molecular Mechanisms of Physical Activity-Induced
Health Benefits. Cell Metab 2015;22:4-11. doi: 10.1016/j.
cmet.2015.05.011
Hawley JA, Joyner MJ, Green DJ. Mimicking exercise: what
matters most and where to next? J Physiol 2021;599:791-
doi: 10.1113/JP278761.
Sridhar GR. Diabetes in India: snapshot of a panorama.
Curr Sci 2002;83:791. https://www.currentscience.ac.in/
show.issue.php?volume=83&issue=7
Gordon CD, Nelson GA. Physical activity correlates among
persons with type 2 diabetes in Jamaica. Int J Diabetes
Dev Ctries 2019;39:108-14. https://link.springer.com/article/
1007/s13410-018-0640-3
Carey AL, Kingwell BA. Novel pharmacological approaches
to combat obesity and insulin resistance: targeting skeletal
muscle with ‘exercise mimetics’. Diabetologia 2009;52:2015-
doi: 10.1007/s00125-009-1420-x.
Pedersen BK, Febbraio MA. Muscles, exercise and obesity:
skeletal muscle as a secretory organ. Nat Rev Endocrinol
;8:457-465. doi: 10.1038/nrendo.2012.49.
Catoire M, Kersten S. The search for exercise factors in
humans. FASEB J 2015;29:1615-1628. doi: 10.1096/fj.14-
Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen
M, et al. Adaptations of skeletal muscle to exercise: rapid
increase in the transcriptional coactivator PGC-1. FASEB J
;16:1879-86. doi: 10.1096/fj.02-0367com
Weihrauch M, Handschin C. Pharmacological targeting of
exercise adaptations in skeletal muscle: Benefits and pitfalls.
Biochem Pharmacol. 2018;147:211-220. doi: 10.1016/j.
bcp.2017.10.006.
Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W.
From molecular action to physiological outputs: peroxisome
proliferator-activated receptors are nuclear receptors
at the crossroads of key cellular functions. Prog Lipid Res
;45:120-159. doi: 10.1016/j.plipres.2005.12.002
Valero T. Mitochondrial biogenesis: pharmacological approaches.
Curr Pharm Des 2014;20:5507-9. doi: 10.2174/1
Dobashi Y, Watanabe Y, Miwa C, Suzuki S, Koyama S.
Mammalian target of rapamycin: a central node of complex
signaling cascades. Int J Clin Exp Pathol 201120;4:476-95.
PMID: 21738819; PMCID: PMC3127069.
Zunner BEM, Wachsmuth NB, Eckstein ML, Scherl L,
Schierbauer JR, Haupt S, et al. Myokines and Resistance
Training: A Narrative Review. Int J Mol Sci 2022;23:3501.
doi: 10.3390/ijms23073501
Schoenfeld BJ. The mechanisms of muscle hypertrophy and
their application to resistance training. J Strength Cond Res
;24:2857-2872. doi: 10.1519/JSC.0b013e3181e840f3
Severinsen MCK, Pedersen BK. Muscle-Organ Crosstalk:
The Emerging Roles of Myokines. Endocr Rev
;41:594–609. doi: 10.1210/endrev/bnaa016. Erratum
in: Endocr Rev 2021;42(1):97-99. PMID: 32393961; PMCID:
PMC7288608.
Wedell-Neergaard AS, Lang Lehrskov L, Christensen RH,
Legaard GE, Dorph E, Larsen MK, et al. Exercise-Induced
Changes in Visceral Adipose Tissue Mass Are Regulated by
IL-6 Signaling: A Randomized Controlled Trial. Cell Metab.
;29:844-855.e3. doi: 10.1016/j.cmet.2018.12.007
Novelle MG, Contreras C, Romero-Picó A, López
M, Diéguez C. Irisin, two years later. Int J Endocrinol
;2013:746281. doi: 10.1155/2013/746281.
Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC,
et al. A PGC1-α-dependent myokine that drives brown-fatlike
development of white fat and thermogenesis. Nature
;481:463-8. doi: 10.1038/nature10777
Brenmoehl J, Albrecht E, Komolka K, Schering L, Langhammer
M, Hoeflich A, et al. Irisin is elevated in skeletal
muscle and serum of mice immediately after acute exercise.
Int J Biol Sci 2014;10:338-49. doi: 10.7150/ijbs.7972
Wei G, Sun H, Liu JL, Dong K, Liu J, Zhang M. Indirubin, a
small molecular deriving from connectivity map (CMAP)
screening, ameliorates obesity-induced metabolic dysfunction
by enhancing brown adipose thermogenesis and white
adipose browning. Nutr Metab (Lond) 2020;17:21. doi:
1186/s12986-020-00440-4
Dave HD, Shook M, Varacallo M. Anatomy, Skeletal Muscle.
[Updated 2021 Sep 5]. In: StatPearls [Internet]. Treasure
Island (FL): StatPearls Publishing; 2022 Jan-. Available
from: https://www.ncbi.nlm.nih.gov/books/NBK537236/
Mahlakõiv T, Flamar AL, Johnston LK, Moriyama S, Putzel
GG, Bryce PJ, et al. Stromal cells maintain immune cell
homeostasis in adipose tissue via production of interleukin-
Sci Immunol 2019; 4:eaax0416. doi: 10.1126/sciimmunol.
aax0416
Knudsen NH, Stanya KJ, Hyde AL, Chalom MM, Alexander
RK, Liou YH, et al. Interleukin-13 drives metabolic
conditioning of muscle to endurance exercise. Science
;368:eaat3987. doi: 10.1126/science.aat3987.
Correia JC, Ruas JL. Exercised cytokines promote endurance.
Science 2020;368:470-471. doi: 10.1126/science.
abb4116. PMID: 32355018.
Handschin C. Caloric restriction and exercise “mimetics’’:
Ready for prime time? Pharmacol Res 2016;103:158-66.
doi: 10.1016/j.phrs.2015.11.009.
Gubert C, Hannan AJ. Exercise mimetics: harnessing the
therapeutic effects of physical activity. Nat Rev Drug Discov
;20:862-879. doi: 10.1038/s41573-021-00217-1. Epub
Jun 8. PMID: 34103713.
Hoffman NJ, Parker BL, Chaudhuri R, Fisher-Wellman KH,
Kleinert M, Humphrey SJ, et al. Global Phosphoproteomic
Analysis of Human Skeletal Muscle Reveals a Network of
Exercise-Regulated Kinases and AMPK Substrates. Cell
Metab 2015;22:922-35. doi: 10.1016/j.cmet.2015.09.001.
Erratum in: Cell Metab 2015;22(5):948. PMID: 26437602;
PMCID: PMC4635038.
Belhaj MR, Lawler NG, Hoffman NJ. Metabolomics and
Lipidomics: Expanding the Molecular Landscape of Exercise
Biology. Metabolites 2021;11:151. doi: 10.3390/metabo11030151
Fan W, Evans RM. Exercise Mimetics: Impact on Health and
Performance. Cell Metab 2017;25:242-247. doi: 10.1016/j.
cmet.2016.10.022
Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, et
al. Transcriptional co-activator PGC-1 alpha drives the formation
of slow-twitch muscle fibres. Nature 2002;418:797-
doi: 10.1038/nature00904. PMID: 12181572
Sharabi K, Lin H, Tavares CDJ, Dominy JE, Camporez
JP, Perry RJ, et al. Selective Chemical Inhibition of PGC-
α Gluconeogenic Activity Ameliorates Type 2 Diabetes.
Cell. 2017;169:148-160.e15. doi: 10.1016/j.cell.2017.03.001.
PMID: 28340340; PMCID: PMC5398763.
Coppi L, Ligorio S, Mitro N, Caruso D, De Fabiani E,
Crestani M. PGC1s and Beyond: Disentangling the
Complex Regulation of Mitochondrial and Cellular
Metabolism. Int J Mol Sci 2021;22:6913. doi: 10.3390/
ijms22136913
Egan B, Zierath JR. Exercise metabolism and the molecular
regulation of skeletal muscle adaptation. Cell Metab
;17:162-84. doi: 10.1016/j.cmet.2012.12.012
Sahebkar A, Chew GT, Watts GF. New peroxisome proliferator-
activated receptor agonists: potential treatments
for atherogenic dyslipidemia and non-alcoholic fatty liver
disease. Expert Opin Pharmacother 2014;15:493-503. doi:
1517/14656566.2014.876992
Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo
E, et al. AMPK and PPARdelta agonists are exercise mimetics.
Cell 2008;134:405-15. doi: 10.1016/j.cell.2008.06.051
Asby DJ, Cuda F, Beyaert M, Houghton FD, Cagampang
FR, Tavassoli A. AMPK Activation via Modulation of De
Novo Purine Biosynthesis with an Inhibitor of ATIC Homodimerization.
Chem Biol 2015;22:838-48. doi: 10.1016/j.
chembiol.2015.06.008
Marcinko K, Bujak AL, Lally JS, Ford RJ, Wong TH,
Smith BK, et al. The AMPK activator R419 improves exercise
capacity and skeletal muscle insulin sensitivity in
obese mice. Mol Metab 2015;4:643-51. doi: 10.1016/j.molmet.
06.002
Muise ES, Guan HP, Liu J, Nawrocki AR, Yang X, Wang
C, et al. Pharmacological AMPK activation induces transcriptional
responses congruent to exercise in skeletal
and cardiac muscle, adipose tissues and liver. PLoS One
;14:e0211568. doi: 10.1371/journal.pone.0211568
Ericsson M, Steneberg P, Nyrén R, Edlund H. AMPK activator
O304 improves metabolic and cardiac function, and
exercise capacity in aged mice. Commun Biol 2021;4:1306.
doi: 10.1038/s42003-021-02837-0
D’Anneo A, Lauricella M. Natural and Synthetic Compounds
for Management, Prevention and Treatment of Obesity. Int J
Mol Sci 2022;23:2890. doi: 10.3390/ijms23052890.
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H,
Lerin C, Daussin F, et al. Resveratrol improves mitochondrial
function and protects against metabolic disease by
activating SIRT1 and PGC-1alpha. Cell 2006;127:1109-22.
doi: 10.1016/j.cell.2006.11.013
Cantó C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer
MH, Cen Y, et al. The NAD(+) precursor nicotinamide riboside
enhances oxidative metabolism and protects against
high-fat diet-induced obesity. Cell Metab 2012 ;15:838-47.
doi: 10.1016/j.cmet.2012.04.022
Jang YJ, Byun S. Molecular targets of exercise mimetics and
their natural activators. BMB Rep 2021;54:581-591. doi:
5483/BMBRep.2021.54.12.151
Frohlich J, Chaldakov GN, Vinciguerra M. Cardio- and
neurometabolic adipobiology: Consequences and implications
for therapy. Int J Mol Sci 2021; 22(8): 4137.
doi:10.3390/ijms22084137
Yang YR, Kwon KS. Potential Roles of Exercise-Induced
Plasma Metabolites Linking Exercise to Health
Benefits. Front Physiol 2020;11:602748. doi: 10.3389/
fphys.2020.602748
Hawley JA, Hargreaves M, Joyner MJ, Zierath JR. Integrative
biology of exercise. Cell 2014;159:738-49. doi:
1016/j.cell.2014.10.029
Hoffman NJ. Omics and Exercise: Global Approaches for
Mapping Exercise Biological Networks. Cold Spring Harb
Perspect Med 2017;7:a029884. doi: 10.1101/cshperspect.
a029884