Scientific Online Resource System

Adipobiology

Exercise Mimetics: Fact Or Fantasy?

Gumpeny Lakshmi, Gumpeny R. Sridhar

Abstract

The abundant health benefits of physical exercise are not being translated into practice. In an effort to short circuit the need for physical activity to promote health, exercise-mimetic agents are being developed; they mimic the action of peptide molecules released from exercised muscles. The intention is to mimic biochemi-cal responses even without performing exercise. Technologies have advanced to identify various exercise-induced proteins, called myokines, and to develop ligands which bind to the myokine receptors. A number of such chemicals exist that mimic the effects of activating Peroxisome proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC-1 α), Peroxisome proliferator-activated receptor β/δ (PPAR β/δ) and AMP-activated protein kinase (AMPK). Most such agents were test-ed in animal models with varying degrees of success and mostly undesirable ad-verse effects. The increasing complexity of exercise response is being recognized, making the development and use of single ‘exercise-mimetics’ ineffective, except for some narrow indications. In addition, some of the performance enhancing ex-ercise-mimetics are being misused by endurance athletes, with the chemicals be-ing banned as doping agents. In a fascinating interaction between physiology and pharmacology, agents that can mimic the beneficial effects of physical exercise are an enticing possibility over the distant horizon.

Keywords

myokines, muscle-adipose tissue cross talk, AMPK activators, resvera-trol, athletes, doping

Full Text


References

Neufer PD, Bamman MM, Muoio DM, Bouchard C, Cooper

DM, Goodpaster BH, et al. Understanding the Cellular

and Molecular Mechanisms of Physical Activity-Induced

Health Benefits. Cell Metab 2015;22:4-11. doi: 10.1016/j.

cmet.2015.05.011

Hawley JA, Joyner MJ, Green DJ. Mimicking exercise: what

matters most and where to next? J Physiol 2021;599:791-

doi: 10.1113/JP278761.

Sridhar GR. Diabetes in India: snapshot of a panorama.

Curr Sci 2002;83:791. https://www.currentscience.ac.in/

show.issue.php?volume=83&issue=7

Gordon CD, Nelson GA. Physical activity correlates among

persons with type 2 diabetes in Jamaica. Int J Diabetes

Dev Ctries 2019;39:108-14. https://link.springer.com/article/

1007/s13410-018-0640-3

Carey AL, Kingwell BA. Novel pharmacological approaches

to combat obesity and insulin resistance: targeting skeletal

muscle with ‘exercise mimetics’. Diabetologia 2009;52:2015-

doi: 10.1007/s00125-009-1420-x.

Pedersen BK, Febbraio MA. Muscles, exercise and obesity:

skeletal muscle as a secretory organ. Nat Rev Endocrinol

;8:457-465. doi: 10.1038/nrendo.2012.49.

Catoire M, Kersten S. The search for exercise factors in

humans. FASEB J 2015;29:1615-1628. doi: 10.1096/fj.14-

Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen

M, et al. Adaptations of skeletal muscle to exercise: rapid

increase in the transcriptional coactivator PGC-1. FASEB J

;16:1879-86. doi: 10.1096/fj.02-0367com

Weihrauch M, Handschin C. Pharmacological targeting of

exercise adaptations in skeletal muscle: Benefits and pitfalls.

Biochem Pharmacol. 2018;147:211-220. doi: 10.1016/j.

bcp.2017.10.006.

Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W.

From molecular action to physiological outputs: peroxisome

proliferator-activated receptors are nuclear receptors

at the crossroads of key cellular functions. Prog Lipid Res

;45:120-159. doi: 10.1016/j.plipres.2005.12.002

Valero T. Mitochondrial biogenesis: pharmacological approaches.

Curr Pharm Des 2014;20:5507-9. doi: 10.2174/1

Dobashi Y, Watanabe Y, Miwa C, Suzuki S, Koyama S.

Mammalian target of rapamycin: a central node of complex

signaling cascades. Int J Clin Exp Pathol 201120;4:476-95.

PMID: 21738819; PMCID: PMC3127069.

Zunner BEM, Wachsmuth NB, Eckstein ML, Scherl L,

Schierbauer JR, Haupt S, et al. Myokines and Resistance

Training: A Narrative Review. Int J Mol Sci 2022;23:3501.

doi: 10.3390/ijms23073501

Schoenfeld BJ. The mechanisms of muscle hypertrophy and

their application to resistance training. J Strength Cond Res

;24:2857-2872. doi: 10.1519/JSC.0b013e3181e840f3

Severinsen MCK, Pedersen BK. Muscle-Organ Crosstalk:

The Emerging Roles of Myokines. Endocr Rev

;41:594–609. doi: 10.1210/endrev/bnaa016. Erratum

in: Endocr Rev 2021;42(1):97-99. PMID: 32393961; PMCID:

PMC7288608.

Wedell-Neergaard AS, Lang Lehrskov L, Christensen RH,

Legaard GE, Dorph E, Larsen MK, et al. Exercise-Induced

Changes in Visceral Adipose Tissue Mass Are Regulated by

IL-6 Signaling: A Randomized Controlled Trial. Cell Metab.

;29:844-855.e3. doi: 10.1016/j.cmet.2018.12.007

Novelle MG, Contreras C, Romero-Picó A, López

M, Diéguez C. Irisin, two years later. Int J Endocrinol

;2013:746281. doi: 10.1155/2013/746281.

Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC,

et al. A PGC1-α-dependent myokine that drives brown-fatlike

development of white fat and thermogenesis. Nature

;481:463-8. doi: 10.1038/nature10777

Brenmoehl J, Albrecht E, Komolka K, Schering L, Langhammer

M, Hoeflich A, et al. Irisin is elevated in skeletal

muscle and serum of mice immediately after acute exercise.

Int J Biol Sci 2014;10:338-49. doi: 10.7150/ijbs.7972

Wei G, Sun H, Liu JL, Dong K, Liu J, Zhang M. Indirubin, a

small molecular deriving from connectivity map (CMAP)

screening, ameliorates obesity-induced metabolic dysfunction

by enhancing brown adipose thermogenesis and white

adipose browning. Nutr Metab (Lond) 2020;17:21. doi:

1186/s12986-020-00440-4

Dave HD, Shook M, Varacallo M. Anatomy, Skeletal Muscle.

[Updated 2021 Sep 5]. In: StatPearls [Internet]. Treasure

Island (FL): StatPearls Publishing; 2022 Jan-. Available

from: https://www.ncbi.nlm.nih.gov/books/NBK537236/

Mahlakõiv T, Flamar AL, Johnston LK, Moriyama S, Putzel

GG, Bryce PJ, et al. Stromal cells maintain immune cell

homeostasis in adipose tissue via production of interleukin-

Sci Immunol 2019; 4:eaax0416. doi: 10.1126/sciimmunol.

aax0416

Knudsen NH, Stanya KJ, Hyde AL, Chalom MM, Alexander

RK, Liou YH, et al. Interleukin-13 drives metabolic

conditioning of muscle to endurance exercise. Science

;368:eaat3987. doi: 10.1126/science.aat3987.

Correia JC, Ruas JL. Exercised cytokines promote endurance.

Science 2020;368:470-471. doi: 10.1126/science.

abb4116. PMID: 32355018.

Handschin C. Caloric restriction and exercise “mimetics’’:

Ready for prime time? Pharmacol Res 2016;103:158-66.

doi: 10.1016/j.phrs.2015.11.009.

Gubert C, Hannan AJ. Exercise mimetics: harnessing the

therapeutic effects of physical activity. Nat Rev Drug Discov

;20:862-879. doi: 10.1038/s41573-021-00217-1. Epub

Jun 8. PMID: 34103713.

Hoffman NJ, Parker BL, Chaudhuri R, Fisher-Wellman KH,

Kleinert M, Humphrey SJ, et al. Global Phosphoproteomic

Analysis of Human Skeletal Muscle Reveals a Network of

Exercise-Regulated Kinases and AMPK Substrates. Cell

Metab 2015;22:922-35. doi: 10.1016/j.cmet.2015.09.001.

Erratum in: Cell Metab 2015;22(5):948. PMID: 26437602;

PMCID: PMC4635038.

Belhaj MR, Lawler NG, Hoffman NJ. Metabolomics and

Lipidomics: Expanding the Molecular Landscape of Exercise

Biology. Metabolites 2021;11:151. doi: 10.3390/metabo11030151

Fan W, Evans RM. Exercise Mimetics: Impact on Health and

Performance. Cell Metab 2017;25:242-247. doi: 10.1016/j.

cmet.2016.10.022

Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, et

al. Transcriptional co-activator PGC-1 alpha drives the formation

of slow-twitch muscle fibres. Nature 2002;418:797-

doi: 10.1038/nature00904. PMID: 12181572

Sharabi K, Lin H, Tavares CDJ, Dominy JE, Camporez

JP, Perry RJ, et al. Selective Chemical Inhibition of PGC-

α Gluconeogenic Activity Ameliorates Type 2 Diabetes.

Cell. 2017;169:148-160.e15. doi: 10.1016/j.cell.2017.03.001.

PMID: 28340340; PMCID: PMC5398763.

Coppi L, Ligorio S, Mitro N, Caruso D, De Fabiani E,

Crestani M. PGC1s and Beyond: Disentangling the

Complex Regulation of Mitochondrial and Cellular

Metabolism. Int J Mol Sci 2021;22:6913. doi: 10.3390/

ijms22136913

Egan B, Zierath JR. Exercise metabolism and the molecular

regulation of skeletal muscle adaptation. Cell Metab

;17:162-84. doi: 10.1016/j.cmet.2012.12.012

Sahebkar A, Chew GT, Watts GF. New peroxisome proliferator-

activated receptor agonists: potential treatments

for atherogenic dyslipidemia and non-alcoholic fatty liver

disease. Expert Opin Pharmacother 2014;15:493-503. doi:

1517/14656566.2014.876992

Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo

E, et al. AMPK and PPARdelta agonists are exercise mimetics.

Cell 2008;134:405-15. doi: 10.1016/j.cell.2008.06.051

Asby DJ, Cuda F, Beyaert M, Houghton FD, Cagampang

FR, Tavassoli A. AMPK Activation via Modulation of De

Novo Purine Biosynthesis with an Inhibitor of ATIC Homodimerization.

Chem Biol 2015;22:838-48. doi: 10.1016/j.

chembiol.2015.06.008

Marcinko K, Bujak AL, Lally JS, Ford RJ, Wong TH,

Smith BK, et al. The AMPK activator R419 improves exercise

capacity and skeletal muscle insulin sensitivity in

obese mice. Mol Metab 2015;4:643-51. doi: 10.1016/j.molmet.

06.002

Muise ES, Guan HP, Liu J, Nawrocki AR, Yang X, Wang

C, et al. Pharmacological AMPK activation induces transcriptional

responses congruent to exercise in skeletal

and cardiac muscle, adipose tissues and liver. PLoS One

;14:e0211568. doi: 10.1371/journal.pone.0211568

Ericsson M, Steneberg P, Nyrén R, Edlund H. AMPK activator

O304 improves metabolic and cardiac function, and

exercise capacity in aged mice. Commun Biol 2021;4:1306.

doi: 10.1038/s42003-021-02837-0

D’Anneo A, Lauricella M. Natural and Synthetic Compounds

for Management, Prevention and Treatment of Obesity. Int J

Mol Sci 2022;23:2890. doi: 10.3390/ijms23052890.

Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H,

Lerin C, Daussin F, et al. Resveratrol improves mitochondrial

function and protects against metabolic disease by

activating SIRT1 and PGC-1alpha. Cell 2006;127:1109-22.

doi: 10.1016/j.cell.2006.11.013

Cantó C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer

MH, Cen Y, et al. The NAD(+) precursor nicotinamide riboside

enhances oxidative metabolism and protects against

high-fat diet-induced obesity. Cell Metab 2012 ;15:838-47.

doi: 10.1016/j.cmet.2012.04.022

Jang YJ, Byun S. Molecular targets of exercise mimetics and

their natural activators. BMB Rep 2021;54:581-591. doi:

5483/BMBRep.2021.54.12.151

Frohlich J, Chaldakov GN, Vinciguerra M. Cardio- and

neurometabolic adipobiology: Consequences and implications

for therapy. Int J Mol Sci 2021; 22(8): 4137.

doi:10.3390/ijms22084137

Yang YR, Kwon KS. Potential Roles of Exercise-Induced

Plasma Metabolites Linking Exercise to Health

Benefits. Front Physiol 2020;11:602748. doi: 10.3389/

fphys.2020.602748

Hawley JA, Hargreaves M, Joyner MJ, Zierath JR. Integrative

biology of exercise. Cell 2014;159:738-49. doi:

1016/j.cell.2014.10.029

Hoffman NJ. Omics and Exercise: Global Approaches for

Mapping Exercise Biological Networks. Cold Spring Harb

Perspect Med 2017;7:a029884. doi: 10.1101/cshperspect.

a029884




DOI: http://dx.doi.org/10.14748/adipo.v11.8559

Refbacks

Article Tools
Email this article (Login required)
About The Authors

Gumpeny Lakshmi
Department of Medicine, Gayatri Vidya Parishad Institute of Health Care and Medical Technology, Visakhapatnam and Endocrine and Diabetes Centre, Visakhapatnam, India
India

Gumpeny R. Sridhar
Department of Medicine, Gayatri Vidya Parishad Institute of Health Care and Medical Technology, Visakhapatnam and Endocrine and Diabetes Centre, Visakhapatnam, India
India

Font Size


|