Scientific Online Resource System

Scripta Scientifica Medica

Beneficial effects of polyphenols in metabolic syndrome—a review

Mehmed Abtulov, Stefka Valcheva-Kuzmanova


INTRODUCTION: Polyphenols (PPs) are plant-derived chemical compounds bearing one or more phenolic rings. The most commonly presented dietary PPs include anthocyanins, flavonols, flavanols and phenolic acids. Studies have shown that polyphenols exert a variety of actions including antioxidant, anti-inflammatory, antimicrobial, antiproliferative, cancer protective, cardioprotective, lipid-lowering, and glucose-lowering. Metabolic syndrome (MetS) is a global health issue associated with an increased risk of cardiovascular diseases, type 2 diabetes, and certain types of cancer.

AIM: The purpose of this paper is to summarize the current knowledge about the beneficial effects of different polyphenols on the clinical manifestations of metabolic syndrome.

MATERIALS AND METHODS: Literature in PubMed, Google Scholar and ScienceDirect has been studied and analyzed.

RESULTS: Most data about the beneficial effects of polyphenols is derived from preclinical studies. The clinical trials involving polyphenolic compounds in subjects with MetS are limited, comprise a small number of participants, and the duration is short.

CONCLUSION: Numerous studies show promising effects of polyphenols in improving the biochemical and clinical abnormalities associated with metabolic syndrome but larger, more precise, better controlled clinical trials are necessary to reveal their benefits in clinical practice.


polyphenols; metabolic syndrome

Full Text


Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal. 2013;18(14):1818-92. doi: 10.1089/ars.2012.4581.

Silva RFM, Pogačnik L. Polyphenols from food and natural products: neuroprotection and safety. Antioxidants (Basel). 2020; 9(1):61. doi: 10.3390/antiox9010061.

Williamson G. The role of polyphenols in modern nutrition. Nutr Bull. 2017;42(3):226-35. doi: 10.1111/nbu.12278.

Liu K, Luo M, Wei S. The bioprotective effects of polyphenols on metabolic syndrome against oxidative stress: Evidences and perspectives. Oxid Med Cell Longev. 2019;2019:6713194. doi: 10.1155/2019/6713194.

Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47. doi: 10.1017/jns.2016.41.

Cherniack EP. Polyphenols and aging. In: Malavolta M, Mocchegiani E, editors. Molecular basis of nutrition and aging: A volume in the molecular nutrition series. Academic Press; 2016. pp. 649-57.

Chan SG, Murphy PA, Ho SC, Kreiger N, Darlington G, So EK, et al. Isoflavonoid content of Hong Kong soy foods. J Agric Food Chem. 2009;57(12):5386-90. doi: 10.1021/jf803870k.

Arts IC, Hollman PC. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr. 2005;81(1 Suppl):317S-25S. doi: 10.1093/ajcn/81.1.317S.

Katsiki N, Athyros VG, Karagiannis A, Mikhailidis DP. Metabolic syndrome and non-cardiac vascular diseases: an update from human studies. Curr Pharm Des. 2014;20(31):4944-52. doi: 10.2174/1381612819666131206100750.

Marott SC, Nordestgaard BG, Tybjærg-Hansen A, Benn M. Components of the metabolic syndrome and risk of type 2 diabetes. J Clin Endocrinol Metab. 2016;101(8):3212-21. doi: 10.1210/jc.2015-3777.

Galassi A, Reynolds K, He J. Metabolic syndrome and risk of cardiovascular disease: a meta-analysis. Am J Med. 2006;119(10):812-9. doi: 10.1016/j.amjmed.2006.02.031.

Benedict M, Zhang X. Non-alcoholic fatty liver disease: an expanded review. World J Hepatol. 2017;9(16):715-32. doi: 10.4254/wjh.v9.i16.715.

Vgontzas AN, Bixler EO, Chrousos GP. Sleep apnea is a manifestation of the metabolic syndrome. Sleep Med Rev. 2005;9(3):211-24. doi: 10.1016/j.smrv.2005.01.006.

Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14(5):270-84. doi: 10.1038/nrendo.2018.24.

Farooqui AA, Farooqui T, Panza F, Frisardi V. Metabolic syndrome as a risk factor for neurological disorders. Cell Mol Life Sci. 2012;69(5):741-62. doi: 10.1007/s00018-011-0840-1.

Esposito K, Chiodini P, Colao A, Lenzi A, Giugliano D. Metabolic syndrome and risk of cancer: a systematic review and meta-analysis. Diabetes Care. 2012;35(11):2402-11. doi: 10.2337/dc12-0336.

Dommermuth R, Ewing K. Metabolic syndrome: systems thinking in heart disease. Prim Care. 2018;45(1):109-29. doi: 10.1016/j.pop.2017.10.003.

Nuttall FQ. Body mass index: obesity, BMI, and health: a critical review. Nutr Today. 2015;50(3):117-28. doi: 10.1097/NT.0000000000000092.

Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365(9468):1415-28. doi: 10.1016/S0140-6736(05)66378-7.

Sharma P. Inflammation and the metabolic syndrome. Indian J Clin Biochem. 2011;26(4):317-8. doi: 10.1007/s12291-011-0175-6.

Reddy P, Lent-Schochet D, Ramakrishnan N, McLaughlin M, Jialal I. Metabolic syndrome is an inflammatory disorder: a conspiracy between adipose tissue and phagocytes. Clin Chim Acta. 2019;496:35-44. doi: 10.1016/j.cca.2019.06.019.

Aguilar-Salinas CA, Viveros-Ruiz T. Recent advances in managing/understanding the metabolic syndrome. F1000Res. 2019 3;8:F1000 Faculty Rev-370. doi: 10.12688/f1000research.17122.1.

Chen Z, Zhu QY, Tsang D, Huang Y. Degradation of green tea catechins in tea drinks. J Аgricult Food Chem. 2001;49(1):477-82. doi: 10.1021/jf000877h.

Wang S, Moustaid-Moussa N, Chen L, Mo H, Shastri A, Su R, et al. Novel insights of dietary polyphenols and obesity. J Nutr Biochem. 2014; 25(1):1-18. doi: 10.1016/j.jnutbio.2013.09.001.

Meydani M, Hasan ST. Dietary polyphenols and obesity. Nutrients. 2010; 2(7):737-51. doi: 10.3390/nu2070737.

Ching Y, Davies S, Hardie D. Analysis of the specificity of the AMP-activated protein kinase by site-directed mutagenesis of bacterially expressed 3-hydroxy 3-methylglutaryl-CoA reductase, using a single primer variant of the unique-site-elimination method. Eur J Biochem. 1996;237(3):800-8. doi: 10.1111/j.1432-1033.1996.0800p.x.

Murase T, Misawa K, Haramizu S, Hase T. Catechin-induced activation of the LKB1/AMP-activated protein kinase pathway. Biochem Pharmacol. 2009;78(1):78-84. doi: 10.1016/j.bcp.2009.03.021.

Bruno R, Dugan C, Smyth J, DiNatale D, Koo S. Green tea extract protects leptin-deficient, spontaneously obese mice from hepatic steatosis and injury. J Nutr. 2008;138(2):323-31. doi: 10.1093/jn/138.2.323.

Axling U, Olsson C, Xu J, Fernandez C, Larsson S, Strom K, et al. Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice. Nutr Metab. 2012;9(1):105. doi: 10.1186/1743-7075-9-105.

Bose M, Lambert JD, Ju J, Reuhl KR, Shapses SA, Yang CS. The major green tea polyphenol, (−)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J Nutr. 2008;138(9):1677-83. doi: 10.1093/jn/138.9.1677.

Wu CH, Lu FH, Chang CS, Chang TC, Wang RH, Chang CJ. Relationship among habitual tea consumption, percent body fat, and body fat distribution. Obes Res. 2003;11(9):1088-95. doi: 10.1038/oby.2003.149.

Hughes L, Arts I, Ambergen T, Brants H, Dagnelie P, Goldbohm R, et al. Higher dietary flavone, flavonol, and catechin intakes are associated with less of an increase in BMI over time in women: a longitudinal analysis from the Netherlands cohort study. Am J Clin Nutr. 2008;88(5):1341-52. doi: 10.3945/ajcn.2008.26058.

Wu X, Prior R. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS / MS in common foods in the United States: fruits and berries. J Agric Food Chem. 2005;53(7):2589-99. doi: 10.1021/jf048068b.

Yousuf B, Gul K, Wani AA, Singh P. Health benefits of anthocyanins and their encapsulation for potential use in food systems: a review. Crit Rev Food Sci Nutr. 2016;56 (13):2223-30. doi: 10.1080/10408398.2013.805316.

Azzini E, Giacometti J, Russo GL. Antiobesity effects of anthocyanins in preclinical and clinical studies. Oxid Med Cell Longev. 2017; 2017:2740364. doi: 10.1155/2017/2740364.

Fanning KJ, Topp B, Russell D, Stanley R, Netzel M. Japanese plums (Prunus salicina Lindl.) and phytochemicals - breeding, horticultural practice, postharvest storage, processing and bioactivity. J Sci Food Agric. 2014;94(11):2137-47. doi: 10.1002/jsfa.6591.

Bhaswant M, Fanning K, Netzel M, Mathai ML, Panchal SK, Brown L. Cyanidin 3- glucoside improves diet-induced metabolic syndrome in rats. Pharmacol Res. 2015;102:208-17. doi: 10.1016/j.phrs.2015.10.006.

Wei X, Wang D, Yang Y, Xia M, Li D, Li G, et al. Cyanidin-3-O-β-glucoside improves obesity and triglyceride metabolism in KK-Ay mice by regulating lipoprotein lipase activity. J Sci Food Agric. 2011;91(6):1006-13. doi: 10.1002/jsfa.4275.

Scazzocchio B, Varì R, Filesi C, D'Archivio M, Santangelo C, Giovannini C, et al. Cyanidin-3-O-β-glucoside and protocatechuic acid exert insulin-like effects by upregulating PPARγ activity in human omental adipocytes. Diabetes. 2011;60(9):2234-44. doi: 10.2337/db10-1461.

Skates E, Overall J, DeZego K, Wilson M, Esposito D, Lila MA, et al. Berries containing anthocyanins enhanced methylation profiles are more effective at ameliorating high fat diet-induced metabolic damage. Food Chem Toxicol. 2018;111:445-53. doi: 10.1016/j.fct.2017.11.032.

van der Spuy WJ, Pretorius E. Is the use of resveratrol in the treatment and prevention of obesity premature? Nutr Res Rev. 2009;22(2):111-17. doi: 10.1017/S0954422409990084.

Rayalam S, Yang JY, Ambati S, Della-Fera MA, Baile CA. Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Phytother Res. 2008;22(10):1367-71. doi: 10.1002/ptr.2503.

Chen S, Li Z, Li W, Shan Z, Zhu W. Resveratrol inhibits cell differentiation in 3T3-L1 adipocytes via activation of AMPK. Can J Physiol Pharmacol. 2011;89(11):793-9. doi: 10.1139/y11-077.

Kang L, Heng W, Yuan A, Baolin L, Fang H. Resveratrol modulates adipokine expression and improves insulin sensitivity in adipocytes: relative to inhibition of inflammatory responses. Biochimie. 2010;92(7):789-96. doi: 10.1016/j.biochi.2010.02.024.

Alberdi G, Rodriguez VM, Miranda J, Macarulla MT, Arias N, Andres-Lacueva C, et al. Changes in white adipose tissue metabolism induced by resveratrol in rats. Nutr Metab. 2006;8(1):29. doi: 10.1186/1743-7075-8-29.

Kim S, Jin Y, Choi Y, Park T. Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochem Pharmacol. 2011;81(11):1343-51. doi: 10.1016/j.bcp.2011.03.012.

Kjær TN, Ornstrup MJ, Poulsen MM, Stødkilde-Jørgensen H, Jessen N, Jørgensen JOL, et al. No beneficial effects of resveratrol on the metabolic syndrome: a randomized placebo-controlled clinical trial. J Clin Endocrinol Metab. 2017;102(5):1642-51. doi: 10.1210/jc.2016-2160.

da Silva IV, Rodrigues JS, Rebelo I, Miranda JPG, Soveral G. Revisiting the metabolic syndrome: the emerging role of aquaglyceroporins. Cell Mol Life Sci. 2018;75(11):1973-88. doi: 10.1007/s00018-018-2781-4.

Tome-Carneiro J, Gonzalvez M, Larrosa M, Garcia-Almagro FJ, Aviles-Plaza F, Parra S, et al. Consumption of a grape extract supplement containing resveratrol decreases oxidized LDL and ApoB in patients undergoing primary prevention of cardiovascular disease: a triple-blind, 6-month follow-up, placebo-controlled, randomized trial. Mol Nutr Food Res. 2013;56(5):810-21. doi: 10.1002/mnfr.201100673.

Tome-Carneiro J, Gonzalvez M, Larrosa M, Yanez-Gascon MJ, Garcia-Almagro FJ, Ruiz-Ros JA, et al. Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: a triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease. Cardiovasc Drugs Ther. 2013;27(1):37-48. doi: 10.1007/s10557-012-6427-8.

Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011;14(5):612-22. doi: 10.1016/j.cmet.2011.10.002.

Kim C, Le T, Chen C, Cheng JX, Kim KH. Curcumin inhibits adipocyte differentiation through modulation of mitotic clonal expansion. J Nutr Biochem. 2011;22(10):910-20. doi: 10.1016/j.jnutbio.2010.08.003.

Woo HM, Kang J-H, Kawada T, Yoo H, Sung MK, Yu R. Active spice-derived components can inhibit inflammatory responses of adipose tissue in obesity by suppressing inflammatory actions of macrophages and release of monocyte chemoattractant protein-1 from adipocytes. Life Sci. 2007;80(10):926-31. doi: 10.1016/j.lfs.2006.11.030.

Weisberg S, Leibel R, Tortoriello D. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity.

Endocrinol. 2008;149(7):3549-58. doi: 10.1210/en.2008-0262.

Shao W, Yu Z, Chiang Y, Yang Y, Chai T, Foltz W, et al. Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes. PLoS One. 2012;7(1):e28784. doi: 10.1371/journal.pone.0028784.

Mohammadi A, Sahebkar A, Iranshahi M, Amini M, Khojasteh R, Ghayour-Mobarhan M, et al. Effects of supplementation with curcuminoids on dyslipidemia in obese patients: a randomized crossover trial. Phytother Res. 2013;27(3):374-9. doi: 10.1002/ptr.4715.

Sahebkar A, Mohammadi A, Atabati A, Rahiman S, Tavallaie S, Iranshahi M, et al. Curcuminoids modulate pro-oxidant-antioxidant balance but not the immune response to heat shock protein 27 and oxidized LDL in obese individuals. Phytother Res. 2013;27(12):1883-8. doi: 10.1002/ptr.4952.

Ganjali S, Sahebkar A. Investigation of the effects of curcumin on serum cytokines in obese individuals: a randomized controlled trial. Sci World J. 2014;2014:6. doi: 10.1155/2014/898361.

Akbari M, Lankarani KB, Tabrizi R, Ghayour-Mobarhan M, Peymani P, Ferns G, et al. The effects of curcumin on weight loss among patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol. 2019;10:649. doi: 10.3389/fphar.2019.00649.

Liddle M, Hull C, Liu C, Powell D. Contact urticaria from curcumin. Dermatitis.

;17(4):196-7. doi: 10.2310/6620.2006.06004.

Esposito K, Marfella R, Ciotola M, Di Palo C, Giugliano F, Giugliano G, et al. Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA. 2004;292(12):1440-6. doi: 10.1001/jama.292.12.1440.

Basu A, Du M, Leyva MJ, Sanchez K, Betts NM, Wu M, et al. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J Nutr. 2010;140(9):1582-7. doi: 10.3945/jn.110.124701.

Kolehmainen M, Mykkänen O, Kirjavainen PV, Leppänen T, Moilanen E, Adriaens M, et al. Bilberries reduce low-grade inflammation in individuals with features of metabolic syndrome. Mol Nutr Food Res. 2012;56(10):1501-10. doi: 10.1002/mnfr.201200195.

Sivaprakasapillai B, Edirisinghe I, Randolph J, Steinberg F, Kappagoda T. Effect of grape seed extract on blood pressure in subjects with the metabolic syndrome. Metabolism. 2009;58(12):1743-6. doi: 10.1016/j.metabol.2009.05.030.

Barona J, Aristizabal JC, Blesso CN, Volek JS, Fernandez ML. Grape polyphenols reduce blood pressure and increase flow-mediated vasodilation in men with metabolic syndrome. J Nutr. 2012;142(9):1626-32. doi: 10.3945/jn.112.162743.

Basu A, Du M, Sanchez K, Leyva MJ, Betts NM, Blevins S, et al. Green tea minimally affects biomarkers of inflammation in obese subjects with metabolic syndrome. Nutrition. 2011;27(2):206-13. doi: 10.1016/j.nut.2010.01.015.

Al Shukor N, Ravallec R, Van Camp J, Raes K, Smagghe G. Flavonoids stimulate cholecystokinin peptide secretion from the enteroendocrine STC-1 cells. Fitoterapia. 2016;113:128-31. doi: 10.1016/j.fitote.2016.07.016.

Martinez-Gonzalez AI, Alvarez-Parrilla E, Díaz-Sánchez ÁG, de la Rosa LA, Núñez-Gastélum JA, Vazquez-Flores AA, et al. In vitro inhibition of pancreatic lipase by polyphenols: a kinetic, fluorescence spectroscopy and molecular docking study. Food Technol Biotechnol. 2017;55(4):519-30. doi: 10.17113/ftb.

Stevens JF, Revel JS, Maier CS. Mitochondria-centric review of polyphenol bioactivity in cancer models. Antioxid Redox Signal. 2018;29(16):1589-1611. doi: 10.1089/ars.2017.7404.

Zang M, Xu S, Maitland-Toolan KA, Zuccollo A, Hou X, Jiang B, et al. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes. 2006;55(8):2180-91. doi: 10.2337/db05-1188.

Bustanji Y, Issa A, Mohammad M, Hudaib M, Tawah K, Alkhatib H, et al. Inhibition of hormone-sensitive lipase and pancreatic lipase by Rosmarinus officinalis extract and selected phenolic constituents. J Med Plants Res. 2010;4(21):2235–42. doi: 10.5897/JMPR10.399.

Tian C, Ye X, Zhang R, Long J, Ren W, Ding S, et al. Green tea polyphenols reduced fat deposits in high fat-fed rats via erk1/2-PPARγ-adiponectin pathway. PLoS One. 2013;8(1):e53796. doi: 10.1371/journal.pone.0053796.

Li BH, Ma XF, Wang Y, Tian WX. Structure-activity relationship of polyphenols that inhibit fatty acid synthase. J Biochem. 2005;138(6):679-85. doi: 10.1093/jb/mvi171.

Kobayashi S. The effect of polyphenols on hypercholesterolemia through inhibiting the transport and expression of Niemann-Pick C1-Like 1. Int J Mol Sci. 2019;20(19):4939. doi: 10.3390/ijms20194939.

Ogawa K, Hirose S, Nagaoka S, Yanase E. Interaction between tea polyphenols and bile acid inhibits micellar cholesterol solubility. J Agric Food Chem. 2016;64(1):204-9. doi: 10.1021/acs.jafc.5b05088.

Zhao W, Haller V, Ritsch A. The polyphenol PGG enhances expression of SR-BI and ABCA1 in J774 and THP-1 macrophages. Atherosclerosis. 2015;242(2):611-7. doi: 10.1016/j.atherosclerosis.2015.08.025.

Burke MF, Khera AV, Rader DJ. Polyphenols and cholesterol efflux: is coffee the next red wine? Circ Res. 2010;106(4):627-9. doi: 10.1161/CIRCRESAHA.109.215855.

Williamson G, Sheedy K. Effects of polyphenols on insulin resistance. Nutrients. 2020;12(10):3135. doi: 10.3390/nu12103135.

Johnston K, Sharp P, Clifford M, Morgan L. Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells. FEBS Lett. 2005;579(7):1653-7. doi: 10.1016/j.febslet.2004.12.099.

González-Abuín N, Martínez-Micaelo N, Margalef M, Blay M, Arola-Arnal A, Muguerza B, et al. A grape seed extract increases active glucagon-like peptide-1 levels after an oral glucose load in rats. Food Funct. 2014;5(9):2357-64. doi: 10.1039/c4fo00447g.

Fujii Y, Osaki N, Hase T, Shimotoyodome A. Ingestion of coffee polyphenols increases postprandial release of the active glucagon-like peptide-1 (GLP-1(7-36)) amide in C57BL/6J mice. J Nutr Sci. 2015;4:e9. doi: 10.1017/jns.2014.71.

Rehman K, Ali MB, Akash MSH. Genistein enhances the secretion of glucagon-like peptide-1 (GLP-1) via downregulation of inflammatory responses. Biomed Pharmacother. 2019;112:108670. doi: 10.1016/j.biopha.2019.108670.

Ryan CM, Khoo W, Stewart AC, O'Keefe SF, Lambert JD, Neilson AP. Flavanol concentrations do not predict dipeptidyl peptidase-IV inhibitory activities of four cocoas with different processing histories. Food Funct. 2017;8(2):746-56. doi: 10.1039/c6fo01730d.

Cheng DM, Kuhn P, Poulev A, Rojo LE, Lila MA, Raskin I. In vivo and in vitro antidiabetic effects of aqueous cinnamon extract and cinnamon polyphenol-enhanced food matrix. Food Chem. 2012;135(4):2994-3002. doi: 10.1016/j.foodchem.2012.06.117.

Li X , Li S , Chen M , Wang J , Xie B , Sun Z . (-)-Epigallocatechin-3-gallate (EGCG) inhibits starch digestion and improves glucose homeostasis through direct or indirect activation of PXR/CAR-mediated phase II metabolism in diabetic mice. Food Funct. 2018;9(9):4651-63. doi: 10.1039/c8fo01293h.

Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients. 2018;10(11):1618. doi: 10.3390/nu10111618.

Sohrab G, Hosseinpour-Niazi S, Hejazi J, Yuzbashian E, Mirmiran P, Azizi F. Dietary polyphenols and metabolic syndrome among Iranian adults. Int J Food Sci Nutr. 2013;64(6):661-7. doi: 10.3109/09637486.2013.787397.

Vitale M, Masulli M, Rivellese AA, Bonora E, Cappellini F, Nicolucci A, et al. Dietary intake and major food sources of polyphenols in people with type 2 diabetes: The TOSCA.IT Study. Eur J Nutr. 2018;57(2):679-88. doi: 10.1007/s00394-016-1355-1.

Kou T, Wang Q, Cai J, Song J, Du B, Zhao K, et al. Effect of soybean protein on blood pressure in postmenopausal women: a meta-analysis of randomized controlled trials. Food Funct. 2017;8(8):2663-71. doi: 10.1039/c6fo01845a.

Huang H, Chen G, Liao D, Zhu Y, Xue X. Effects of berries consumption on cardiovascular risk factors: a meta-analysis with trial sequential analysis of randomized controlled trials. Sci Rep. 2016;6:23625. doi: 10.1038/srep23625.

Sahebkar A, Ferri C, Giorgini P, Bo S, Nachtigal P, Grassi D. Effects of pomegranate juice on blood pressure: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2017;115:149-61. doi: 10.1016/j.phrs.2016.11.018.

Grosso G, Micek A, Godos J, Pajak A, Sciacca S, Bes-Rastrollo M, et al. Long-term coffee consumption is associated with decreased incidence of new-onset hypertension: a dose-response meta-analysis. Nutrients. 2017;9(8):890. doi: 10.3390/nu9080890.

Liu G, Mi XN, Zheng XX, Xu YL, Lu J, Huang XH. Effects of tea intake on blood pressure: a meta-analysis of randomised controlled trials. Br J Nutr. 2014;112(7):1043-54. doi: 10.1017/S0007114514001731.

Khosravi-Boroujeni H, Nikbakht E, Natanelov E, Khalesi S. Can sesame consumption improve blood pressure? A systematic review and meta-analysis of controlled trials. J Sci Food Agric. 2017;97(10):3087-94. doi: 10.1002/jsfa.8361.

Ursoniu S, Sahebkar A, Andrica F, Serban C, Banach M, Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. Effects of flaxseed supplements on blood pressure: A systematic review and meta-analysis of controlled clinical trial. Clin Nutr. 2016;35(3):615-25. doi: 10.1016/j.clnu.2015.05.012.

Stull A, Cash K, Johnson W, Champagne C, Cefalu W. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J Nutr. 2010;140(10):1764-8. doi: 10.3945/jn.110.125336.

Ziegenfuss T, Hofheins J, Mendel R, Landis J, Anderson R. Effects of a water-soluble cinnamon extract on body composition and features of the metabolic syndrome in pre-diabetic men and women. J Int Soc Sports Nutr. 2006;3(2):45-53. doi: 10.1186/1550-2783-3-2-45.

Egert S, Bosy-Westphal A, Seiberl J, Kürbitz C, Settler U, Plachta-Danielzik S, et al. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br J Nutr. 2009;102(7):1065-74. doi: 10.1017/S0007114509359127.

Zhu Y, Sun J, Lu W, Wang X, Wang X, Han Z, et al. Effects of blueberry supplementation on blood pressure: a systematic review and meta-analysis of randomized clinical trials. J Hum Hypertens. 2017;31(3):165-71. doi: 10.1038/jhh.2016.70.

Taku K, Lin N, Cai D, Hu J, Zhao X, Zhang Y, et al. Effects of soy isoflavone extract supplements on blood pressure in adult humans: systematic review and meta-analysis of ran-domized placebo-controlled trials. J Hypertens. 2010;28(10):1971-82. doi: 10.1097/HJH.0b013e32833c6edb.

van der Made SM, Plat J, Mensink RP. Resveratrol does not influence metabolic risk markers related to cardiovascular health in overweight and slightly obese subjects: a randomized, placebo-controlled crossover trial. PLoS One. 2015;10(3):e0118393. doi: 10.1371/journal.pone.0118393.

Yousefian M, Shakour N, Hosseinzadeh H, Hayes AW, Hadizadeh F, Karimi G. The natural phenolic compounds as modulators of NADPH oxidases in hypertension. Phytomedicine. 2019;55:200-13. doi: 10.1016/j.phymed.2018.08.002.

Vendrame S, Klimis-Zacas D. Potential factors influencing the effects of anthocyanins on blood pressure regulation in humans: a review. Nutrients. 2019;11(6):1431. doi: 10.3390/nu11061431.

Pilšáková L, Riečanský I, Jagla F. The physiological actions of isoflavone phytoestrogens. Physiol Res. 2010;59(5):651-64. doi: 10.33549/physiolres.931902.

Martin S, Giannone G, Andriantsitohaina R, Martinez MC. Delphinidin, an active compound of red wine, inhibits endothelial cell apoptosis via nitric oxide pathway and regulation of calcium homeostasis. Br J Pharmacol. 2003;139(6):1095-102. doi: 10.1038/sj.bjp.0705347.

Article Tools
Email this article (Login required)
About The Authors

Mehmed Abtulov
Medical University of Varna

Department of Pharmacology and Clinical Pharmacology and Therapeutics, Faculty of Medicine

Stefka Valcheva-Kuzmanova
Medical University of Varna

Department of Pharmacology and Clinical Pharmacology and Therapeutics, Faculty of Medicine

Font Size