INTRODUCTION: Serratia marcescens wound infections are a concern in healthcare settings, associated with delayed healing, prolonged hospital stays, higher costs, and sepsis in severe cases.
AIM: This study aimed to evaluate the antimicrobial susceptibility of S. marcescens wound isolates from patients in St. Marina University Hospital, Varna, Bulgaria (2016–2023) and to explore the genetic mechanisms responsible for the 3rd generation cephalosporin resistance in these isolates.
MATERIALS AND METHODS: Over the 8-year period, 131 isolates were collected. Identification and antimicrobial susceptibility testing were performed using Phoenix (BD, USA) and Vitek 2 (BioMerieux, France), with results interpreted by EUCAST guidelines. The genetic mechanisms responsible for beta-lactam resistance were studied by PCR.
RESULTS: A total of 98.5% of the patients were diagnosed with nosocomial S. marcescens infections. Diabetes and a cardiovascular disease were found as accompanying risk factors in 42.8% and 71%, respectively. Resistance rates were: ceftriaxone—14.5%; gentamicin—13.7%; cefepime/trimethoprim-sulfamethoxazole—12.9%, and ciprofloxacin/levofloxacin—12.2%. No carbapenem resistance was found. BlaCTX-M was present in 72.7% of cephalosporin-resistant isolates.
CONCLUSION: S. marcescens remains a significant nosocomial pathogen, with less than 15% resistance to main antimicrobials. We found the leading role of blaCTX-M for the 3rd generation cephalosporin resistance in S. marcescens, confirming the global trends.
Adeolu M, Alnajar S, Naushad S, Gupta SR. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol. 2016;66(12):5575-99. doi: 10.1099/ijsem.0.001485.
Woodward HHM, Clarke KB. A case of infection in man by the Bacterium prodigiosum. Lancet. 1913;181:314–5. doi: 10.1016/S0140-6736(00)76133-2.
Martin SL, Patterson C, Jerabek J. A rare case of Serratia marcescens pacemaker infection and cerebrovascular accident. Chest. 2022;162:A567. doi: 10.1016/j.chest.2022.08.440.
Kim EJ, Park WB, Yoon JK, Cho WS, Kim SJ, Oh YR, et al. Outbreak investigation of Serratia marcescens neurosurgical site infections associated with a contaminated shaving razors. Antimicrob Resist Infect Control. 2020;9(1):64. doi: 10.1186/s13756-020-00725-6.
Us E, Kutlu HH, Tekeli A, Ocal D, Cirpan S, Memikoglu KO. Wound and soft tissue infections of Serratia marcescens in patients receiving wound care: A health care-associated outbreak. Am J Infect Control. 2017;45(4):443-7. doi: 10.1016/j.ajic.2016.11.015.
International Wound Infection Institute. WOUND INFECTION IN CLINICAL PRACTICE Principles of best practice [Internet]. 2022. Available from: https://woundinfection-institute.com/wp-content/uploads/IWII-CD-2022-web-1.pdf
Prakash KG, Goldman J, Hansrivijit P, Balchander, Divya BS, Ellen BA, et al. Severe Skin Infections Due to Serratia marcescens: A Case Associated With Cat Scratch in a Patient With Liver Disease and Review of the Literature. Infect Dis Clin Pract. 2021;29(3):e146-50. doi: 10.1097/IPC.0000000000000987.
EUCAST. eucast: Clinical breakpoints and dosing of antibiotics [Internet]. www.eucast.org. 2024. Available from: https://www.eucast.org/clinical_breakpoints
Niyazi D, Radeva S, Bozhkova M, Savova D, Stoeva T. A Cheap and Simple Method for DNA Isolation from Endonuclease Producing Serratia marcescens. Iran J Public Health. 2023;52(5):1089-109. doi: 10.18502/ijph.v52i5.12731.
Markovska R, Schneider I, Keuleyan E, Sredkova M, Ivanova D, Markova B, et al. A. Extended-spectrum beta-lactamase-producing Enterobacteriaceae in Bulgarian hospitals. Microb Drug Resist. 2008;14(2):119-28 doi: 10.1089/mdr.2008.0814.
Radeva S, Bozhkova M, Niyazi D. History and presence of Serratia marcescens. AMB. 2023;39(3):233-8. doi: 10.59393/amb23390303.
Géry A, Mouet A, Gravey F, Fines-Guyon M, Guerin F, Ethuin F, et al. Investigation of Serratia marcescens surgical site infection outbreak associated with peroperative ultrasonography probe. J Hosp Infect. 2021;111:184-8. doi: 10.1016/j.jhin.2020.12.025.
Psaltikidis EM, Lima T, Fagnani R, Cardoso L, Bachur LF, Höfling CC, et al. Outbreak of Surgical Site Infections by Serratia marcescens Related to Degermation Brush, Int J Infect. 2022;116:s112. doi: 10.1016/j.ijid.2021.12.264.
O’Horo J, Mahler SB, Gardner B, Berbari EF. Serratia and Surgical Site Infections: Risk factors and Epidemiology, Open Forum Infect Dis. 2017;4(1):s650. doi: 10.1093/ofid/ofx163.1730.
SURVEILLANCE REPORT. Annual Epidemiological Report for 2018–2020. Healthcare-associated infections: surgical site infections [Internet]. Available from: https://www.ecdc.europa.eu/sites/default/files/documents/Healthcare-associated%20infections%20-%20surgical%20site%20infections%202018-2020.pdf
Stock I, Grueger T, Wiedemann B. Natural antibiotic susceptibility of strains of Serratia marcescens and the S. liquefaciens complex: S. liquefaciens sensu stricto, S. proteamaculans and S. grimesii. Int J Antimicrob Agents. 2003;22(1):35-47. doi: 10.1016/s0924-8579(02)00163-2.
Bozkurt H, Güdücüoğlu H, Bayram Y, Gülmez S, Kutluay N, Bozkurt EN, et al. The role of serratia bacteria produced from clinical specimens in various infections and susceptibility to antimicrobials. Van Medical J. 2005;12:182‑8.
Ferreira RL, Rezende GS, Damas MSF, Oliveira-Silva M, Pitondo-Silva A, Brito MCA, et al. Characterization of KPC-Producing Serratia marcescens in an Intensive Care Unit of a Brazilian Tertiary Hospital. Front Microbiol. 2020;11:956. doi: 10.3389/fmicb.2020.00956.
Simsek M. Determination of the antibiotic resistance rates of Serratia marcescens isolates obtained from various clinical specimens. Niger J Clin Pract. 2019;22(1):125–30. doi: 10.4103/njcp.njcp_362_18.
Cosimato I, Santella B, Rufolo S, Sabatini P, Galdiero M, Capunzo M, et al. Current Epidemiological Status and Antibiotic Resistance Profile of Serratia marcescens. J Antibiot. 2024; 13(4):323. doi: 10.3390/antibiotics13040323.
Bolourchi N, Noori NG, Giske CG, Nematzadeh S, Haririzadeh Jouriani F, Solgi H, et al. Comprehensive pan-genomic, resistome and virulome analysis of clinical OXA-48 producing carbapenem-resistant Serratia marcescens strains. Gene. 2022;822:146355. doi: 10.1016/j.gene.2022.146355.
Miao M, Wen H, Xu P, Niu S, Lv J, Xie X, et al. Genetic diversity of Carbapenem-Resistant Enterobacteriaceae (CRE) clinical isolates from a tertiary hospital in eastern China. Front microbiol. 2019;9:3341. doi: 10.3389/fmicb.2018.03341.
Gajdács M, Urbán E. Resistance Trends and Epidemiology of Citrobacter-Enterobacter-Serratia in Urinary Tract Infections of Inpatients and Outpatients (RECESUTI): A 10-Year Survey. Medicina (Kaunas). 2019;55(6):285. doi: 10.3390/medicina55060285.
Ivanovan D, Markovska R, Hadjieva N, Schneider I, Mitov I, Bauernfeind A. Extended-spectrum beta-lactamase-producing Serratia marcescens outbreak in a Bulgarian hospital. J Hosp Infect. 2008;70(1):60-5. doi: 10.1016/j.jhin.2008.04.033.
Markovska R, Stoeva T, Bojkova K, Mitov I. Epidemiology and molecular characterization of extended-spectrum beta-lactamase-producing Enterobacter spp., Pantoea agglomerans, and Serratia marcescens isolates from a Bulgarian hospital. Microb Drug Resist. 2014;20(2):131-7. doi: 10.1089/mdr.2013.0102.
Radeva S, Niyazi D, Bozhkova M, Stoeva T. Antimicrobial resistance of Serratia marcescens causing blood stream infections in a large University Hospital in Bulgaria, an 8-year analysis (2016–2023). Acta Microbiol Immunol Hung. 2024 (published online ahead of print). doi: 10.1556/030.2024.02330.
Mlynarczyk A, Szymanek K, Sawicka-Grzelak A, Pazik J, Buczkowsk T, Durlik M, et al. CTX-M and TEM as predominant types of extended spectrum beta-lactamases among Serratia marcescens isolated from solid organ recipients. Transplant Proc. 2009;41(8):3253-5. doi: 10.1016/j.transproceed.2009.08.011.
Batah R, Loucif L, Olaitan AO, Boutefnouchet N, Allag H, Rolain, JM. Outbreak of Serratia marcescens Coproducing ArmA and CTX-M-15 Mediated High Levels of Resistance to Aminoglycoside and Extended-Spectrum Beta-Lactamases, Algeria. Microbiol Drug Resist. 2015;21(4):470–6. doi: 10.1089/mdr.2014.0240.
Harris PN, Ferguson JK. Antibiotic therapy for inducible AmpC β-lactamase-producing Gram-negative bacilli: what are the alternatives to carbapenems, quinolones and aminoglycosides? Int J Antimicrob Agents. 2012;40(4):297-305. doi: 10.1016/j.ijantimicag.2012.06.004.
Cai JC, Zhou HW, Zhang R, Chen GX. Emergence of Serratia marcescens, Klebsiella pneumoniae, and Escherichia coli Isolates possessing the plasmid-mediated carbapenem-hydrolyzing beta-lactamase KPC-2 in intensive care units of a Chinese hospital. Antimicrob Agents Chemother. 2008;52(6):2014-8. doi: 10.1128/AAC.01539-07.