The discovery of antibiotics is among the greatest breakthroughs in the 20th century. The first discoverers of these substances, winners of the Nobel Prize in Medicine, paved the way for the discovery and synthesis of many new analogs with similar effects.
Unfortunately, the rapid and widespread introduction of antibiotics into treatment practice was followed by the equally rapid development of resistant strains of microorganisms. According to the latest WHO report (May 2024), the following are assessed as critical for practice: Acinetobacter baumannii and Enterobacterales—resistant to carbapenem, Enterobacterales—resistant to third-generation cephalosporins, Mycobacterium tuberculosis—resistant to rifampicin. Research indicates their widespread presence in both hospital and outpatient settings. Multidrug resistant bacteria (MDR) pose a significant burden for patients in intensive care units and a daily challenge for healthcare providers aiming to ensure effective treatment. The widespread use of antibiotics outside of human medicine raises global issues that require coordinated action measures. The adopted One Health strategy unites cooperation and communication between all organizations related to the assessment of public health risks and the development and implementation of complex impact measures.
O’Neill, C. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; HMGovernment: London, UK, 2016. [Internet]. Available from: https://amrreview.org/sites/default/files/160518_Final%20paper_with%20cover.pdf. (accessed on 1 November 2022).
World Health Organization (WHO). Strategic Priorities on Antimicrobial Resistance. [Internet]. Abailable from: https://apps.who.int/iris/bitstream/handle/10665/351719/9789240041387-eng.pdf. (accessed on 1 November 2022).
World Health Organisation. WHO updates list of drug-resistant bacteria most threatening to human health [Internet]. www.who.int. 2024. Available from: https://www.who.int/news/item/17-05-2024-who-updates-list-of-drug-resistant-bacteria-most-threatening-to-human-health
Van Boeckel TP, Glennon EE, Chen D, Gilbert M, Robinson TP, Grenfell BT, et al. Reducing antimicrobial use in food animals. Science. 2017 Sep 29;357(6358):1350-2. doi: 10.1126/science.aao1495.
Pollet RA, Glatz CE, Dyer DC, Barnes HJ. Pharmacokinetics of chlortetracycline potentiation with citric acid in the chicken. Am J Vet Res. 1983 Sep;44(9):1718-21.
Hansen LH, Aarestrup F, Sørensen SJ. Quantification of bioavailable chlortetracycline in pig feces using a bacterial whole-cell biosensor. Vet Microbiol. 2002 Jun 5;87(1):51-7. doi: 10.1016/s0378-1135(02)00029-9.
Van den Meersche T, Rasschaert G, Vanden Nest T, Haesebrouck F, Herman L, Van Coillie E, et al. Longitudinal screening of antibiotic residues, antibiotic resistance genes and zoonotic bacteria in soils fertilized with pig manure. Environ Sci Pollut Res Int. 2020 Aug;27(22):28016-29. doi: 10.1007/s11356-020-09119-y.
Campos Calero G, Caballero Gómez N, Benomar N, Pérez Montoro B, Knapp CW, Gálvez A, et al. Deciphering Resistome and Virulome Diversity in a Porcine Slaughterhouse and Pork Products Through Its Production Chain. Front Microbiol. 2018 Sep 12;9:2099. doi: 10.3389/fmicb.2018.02099.
Guardabassi L, Schwarz S, Lloyd DH. Pet animals as reservoirs of antimicrobial-resistant bacteria. J Antimicrob Chemother. 2004 Aug;54(2):321-32. doi: 10.1093/jac/dkh332. Epub 2004 Jul 14. PMID: 15254022.
Pomba C, Rantala M, Greko C, Baptiste KE, Catry B, van Duijkeren E, et al. Public health risk of antimicrobial resistance transfer from companion animals. J Antimicrob Chemother. 2017 Apr 1;72(4):957-968. doi: 10.1093/jac/dkw481.
Tiseo K, Huber L, Gilbert M, Robinson TP, Van Boeckel TP. Global Trends in Antimicrobial Use in Food Animals from 2017 to 2030. Antibiotics (Basel). 2020 Dec 17;9(12):918. doi: 10.3390/antibiotics9120918.
Canton L, Lanusse C, Moreno L. Rational Pharmacotherapy in Infectious Diseases: Issues Related to Drug Residues in Edible Animal Tissues. Animals (Basel). 2021 Oct 1;11(10):2878. doi: 10.3390/ani11102878.
European Commission . Farm to Fork Strategy [Internet]. food.ec.europa.eu. 2020. Available from: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en
Schar D, Klein EY, Laxminarayan R, Gilbert M, Van Boeckel TP. Global trends in antimicrobial use in aquaculture. Sci Rep. 2020 Dec 14;10(1):21878. doi: 10.1038/s41598-020-78849-3.
Maghsodian Z, Sanati AM, Mashifana T, Sillanpää M, Feng S, Nhat T, et al. Occurrence and Distribution of Antibiotics in the Water, Sediment, and Biota of Freshwater and Marine Environments: A Review. Antibiotics (Basel). 2022 Oct 23;11(11):1461. doi: 10.3390/antibiotics11111461.
Larsson DG. Antibiotics in the environment. Ups J Med Sci. 2014 May;119(2):108-12. doi: 10.3109/03009734.2014.896438.
Ferri G, Lauteri C, Vergara A. Antibiotic Resistance in the Finfish Aquaculture Industry: A Review. Antibiotics (Basel). 2022 Nov 8;11(11):1574. doi: 10.3390/antibiotics11111574.
Cabello FC, Godfrey HP, Buschmann AH, Dölz HJ. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect Dis. 2016 Jul;16(7):e127-e133. doi: 10.1016/S1473-3099(16)00100-6.
O'Flaherty E, Borrego CM, Balcázar JL, Cummins E. Human exposure assessment to antibiotic-resistant Escherichia coli through drinking water. Sci Total Environ. 2018 Mar;616-617:1356-1364. doi: 10.1016/j.scitotenv.2017.10.180.
Unger IM, Goyne KW, Kennedy AC, Kremer RJ, McLain JE, Williams CF. Antibiotic Effects on Microbial Community Characteristics in Soils under Conservation Management Practices. Soil Science Society of America Journal. 2012 Nov 26;77(1):100–12.
French GL. Bactericidal agents in the treatment of MRSA infections--the potential role of daptomycin. J Antimicrob Chemother. 2006 Dec;58(6):1107-17. doi: 10.1093/jac/dkl393.
Kümmerer K. Significance of antibiotics in the environment. J Antimicrob Chemother. 2003 Jul;52(1):5-7. doi: 10.1093/jac/dkg293.
Ashbolt NJ, Amézquita A, Backhaus T, Borriello P, Brandt KK, Collignon P, et al. Human Health Risk Assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ Health Perspect. 2013 Sep;121(9):993-1001. doi: 10.1289/ehp.1206316.
Martinez JL. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut. 2009 Nov;157(11):2893-902. doi: 10.1016/j.envpol.2009.05.051.
Consolidated presentation of the joint Scientific Opinion of the GMO and BIOHAZ Panels on the “Use of Antibiotic Resistance Genes as Marker Genes in Genetically Modified Plants” and the Scientific Opinion of the GMO Panel on “Consequences of the Opinion [Internet]. European Food Safety Authority. 2009. Available from: https://www.efsa.europa.eu/en/efsajournal/pub/1108
Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol. 2014 Jul;12(7):465-78. doi: 10.1038/nrmicro3270.
Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DG. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics. 2015 Nov 17;16:964. doi: 10.1186/s12864-015-2153-5.
Decision (EU) 2015/495 of 20 March 2015 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to directive 2008/105/EC of the European Parliament and of the Council. Off J Eur Parliam. 2015;L78:40-2.
Levy K, Woster AP, Goldstein RS, Carlton EJ. Untangling the Impacts of Climate Change on Waterborne Diseases: a Systematic Review of Relationships between Diarrheal Diseases and Temperature, Rainfall, Flooding, and Drought. Environ Sci Technol. 2016 May 17;50(10):4905-22. doi: 10.1021/acs.est.5b06186.
Semenza JC, Herbst S, Rechenburg A, Suk JE, Höser C, Schreiber C, et al. Climate Change Impact Assessment of Food- and Waterborne Diseases. Crit Rev Environ Sci Technol. 2012 Apr;42(8):857-890. doi: 10.1080/10643389.2010.534706.
Park MS, Park KH, Bahk GJ. Interrelationships between Multiple Climatic Factors and Incidence of Foodborne Diseases. Int J Environ Res Public Health. 2018 Nov 7;15(11):2482. doi: 10.3390/ijerph15112482.
Lake IR, Gillespie IA, Bentham G, Nichols GL, Lane C, Adak GK, et al. A re-evaluation of the impact of temperature and climate change on foodborne illness. Epidemiol Infect. 2009 Nov;137(11):1538-47. doi: 10.1017/S0950268809002477.
World Health Organization (WHO). Climate Change and Health. [Internet]. 2021. Available from: https://www.who.int/news-room/fact-heets/detail/climate-change-and-health (accessed on 1 November 2022).
Pietikäinen J, Pettersson M, Bååth E. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol Ecol. 2005 Mar 1;52(1):49-58. doi: 10.1016/j.femsec.2004.10.002.
Philipsborn R, Ahmed SM, Brosi BJ, Levy K. Climatic Drivers of Diarrheagenic Escherichia coli Incidence: A Systematic Review and Meta-analysis. J Infect Dis. 2016 Jul 1;214(1):6-15. doi: 10.1093/infdis/jiw081.
Kaba HEJ, Kuhlmann E, Scheithauer S. Thinking outside the box: Association of antimicrobial resistance with climate warming in Europe - A 30 country observational study. Int J Hyg Environ Health. 2020 Jan;223(1):151-8. doi: 10.1016/j.ijheh.2019.09.008.
Chen J, McIlroy SE, Archana A, Baker DM, Panagiotou G. A pollution gradient contributes to the taxonomic, functional, and resistome diversity of microbial communities in marine sediments. Microbiome. 2019 Jul 15;7(1):104. doi: 10.1186/s40168-019-0714-6.
Coates-Marnane J, Olley J, Burton J, Grinham A. The impact of a high magnitude flood on metal pollution in a shallow subtropical estuarine embayment. Sci Total Environ. 2016 Nov 1;569-570:716-31. doi: 10.1016/j.scitotenv.2016.06.193.
Knapp CW, McCluskey SM, Singh BK, Campbell CD, Hudson G, Graham DW. Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils. PLoS One. 2011;6(11):e27300. doi: 10.1371/journal.pone.0027300.
Patz JA, Epstein PR, Burke TA, Balbus JM. Global climate change and emerging infectious diseases. JAMA. 1996 Jan 17;275(3):217-23.
Omazic A, Bylund H, Boqvist S, Högberg A, Björkman C, Tryland M, et al. Identifying climate-sensitive infectious diseases in animals and humans in Northern regions. Acta Vet Scand. 2019 Nov 14;61(1):53. doi: 10.1186/s13028-019-0490-0.
Semenza JC, Menne B. Climate change and infectious diseases in Europe. Lancet Infect Dis. 2009 Jun;9(6):365-75. doi: 10.1016/S1473-3099(09)70104-5.
Gowrisankar G, Chelliah R, Ramakrishnan SR, Elumalai V, Dhanamadhavan S, Brindha K, et al. Chemical, microbial and antibiotic susceptibility analyses of groundwater after a major flood event in Chennai. Sci Data. 2017 Oct 10;4:170135. doi: 10.1038/sdata.2017.135.
Pingfeng, Y. Elevated Levels of Pathogenic Indicator Bacteria and Antibiotic Resistance Genes After Hurricane Harvey’s Flooding in Houston. Environ Sci Technol Lett. 2018;5(8):481–6.
von Seidlein L, Deen JL. Preventing cholera outbreaks through early targeted interventions. PLoS Med. 2018 Feb 27;15(2):e1002510. doi: 10.1371/journal.pmed.1002510.