Scientific Online Resource System

Scripta Scientifica Medicinae Dentalis

Applications of 3D printing in oral and maxillofacial surgery

Izabella Petrova, Elitsa Dzhongova, Velimira Georgieva

Abstract

Introduction: Three-dimensional (3D) printing, also known as “rapid prototyping” or “additive technology” is a manufacturing process that has undergone significant development during its 40-year history.

Aim: The aim of this review is to analyze and summarize the applications and advantages of 3D printed models in contemporary oral and maxillofacial surgery.

Materials and Methods: PubMed, Medline, and Google Scholar databases were searched in order to select articles related to the topic. The review includes fifty-four articles written in English language, published from 1980 to 2022.

Results: 3D printed models can reproduce cone-beam computed tomography (CBCT) scans of hard tissues extremely accurately. The possibilities for a personalized approach, virtual planning of the operation, surgical navigation, and the ability for individualization of implants have been established as reliable means in maxillofacial traumatology, implantology, and orthognathic surgery.

Conclusion: The implementation of three-dimensional printing technology in the oral and maxillofacial surgery (OMFS) practice enhances accuracy, predictability and precision, while simultaneously reducing time and costs, respectively increasing the benefits for the patient.

Keywords

3D printing, medical rapid prototyping, preoperative planning, surgical simulation

Full Text


References

Oberoi G, Nitsch S, Edelmayer M, Janjić K, Müller AS, Agis H. 3D printing-encompassing the facets of dentistry. Front Bioeng Biotechnol. 2018;6:172. doi: 10.3389/fbioe.2018.00172.

Alberti C. Three-dimensional CT and structure models. Br J Radiol. 1980;53(627):261-2. doi: 10.1259/0007-1285-53-627-261-b.

Marro A, Bandukwala T, Mak W. Three-dimensional printing and medical imaging: a review of the methods and applications. Curr Probl Diagn Radiol. 2016;45(1):2-9. doi: 10.1067/j.cpradiol.2015.07.009.

Winder J, Bibb R. Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg. 2005;63(7):1006-15. doi: 10.1016/j.joms.2005.03.016.

Crafts TD, Ellsperman SE, Wannemuehler TJ, Bellicchi TD, Shipchandler TZ, Mantravadi AV. Three-dimensional printing and its applications in otorhinolaryngology-head and neck surgery. Otolaryngol Head Neck Surg. 2017;156(6):999-1010. doi: 10.1177/0194599816678372.

Terai H, Shimahara M, Sakinaka Y, Tajima S. Accuracy of integration of dental casts in three-dimensional models. J Oral Maxillofac Surg. 1999;57(6):662-5; discussion 666. doi: 10.1016/s0278-2391(99)90425-1.

Guyuron B, Ross RJ. Computer-generated model surgery. An exacting approach to complex craniomaxillofacial disharmonies. J Craniomaxillofac Surg. 1989;17(3):101-4. doi: 10.1016/s1010-5182(89)80079-4.

Olszewski R, Tranduy K, Reychler H. Innovative procedure for computer-assisted genioplasty: three-dimensional cephalometry, rapid-prototyping model and surgical splint. Int J Oral Maxillofac Surg. 2010;39(7):721-4. doi: 10.1016/j.ijom.2010.03.018.

Visscher DO, Farré-Guasch E, Helder MN, Gibbs S, Forouzanfar T, van Zuijlen PP, et al. Advances in bioprinting technologies for craniofacial reconstruction. Trends Biotechnol. 2016;34(9):700-10. doi: 10.1016/j.tibtech.2016.04.001.

Moroni L, Boland T, Burdick JA, De Maria C, Derby B, Forgacs G, et al. Biofabrication: a guide to technology and terminology. Trends Biotechnol. 2018;36(4):384-402. doi: 10.1016/j.tibtech.2017.10.015.

Zhang YS, Yue K, Aleman J, Moghaddam KM, Bakht SM, Yang J, et al. 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng. 2017;45(1):148-63. doi: 10.1007/s10439-016-1612-8.

Schubert C, van Langeveld MC, Donoso LA. Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol. 2014;98(2):159-61. doi: 10.1136/bjophthalmol-2013-304446.

Petzold R, Zeilhofer HF, Kalender WA. Rapid prototyping technology in medicine--basics and applications. Comput Med Imaging Graph. 1999;23(5):277-84. doi: 10.1016/s0895-6111(99)00025-7.

Klinke T, Daboul A, Maron J, Gredes T, Puls R, Jaghsi A, et al. Artifacts in magnetic resonance imaging and computed tomography caused by dental materials. PLoS One. 2012;7(2):e31766. doi: 10.1371/journal.pone.0031766.

Amundson M, Newman M, Cheng A, Khatib B, Cuddy K, Patel A. Three-dimensional computer-assisted surgical planning, manufacturing, intraoperative navigation, and computed tomography in maxillofacial trauma. Atlas Oral Maxillofac Surg Clin North Am. 2020;28(2):119-27. doi: 10.1016/j.cxom.2020.05.006.

Georgantza A, Loomer P, Suzuki T, Froum S, Cho SC, Yu Y. (2016). The Use of 3D Printing in Dental Implant Education. Dent Learn. 2016.

Banks J. Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse. 2013;4(6):22-6. doi: 10.1109/MPUL.2013.2279617.

Kurenov SN, Ionita C, Sammons D, Demmy TL. Three-dimensional printing to facilitate anatomic study, device development, simulation, and planning in thoracic surgery. J Thorac Cardiovasc Surg. 2015;149(4):973-9.e1. doi: 10.1016/j.jtcvs.2014.12.059.

Adibi S, Zhang W, Servos T, O'Neill PN. Cone beam computed tomography in dentistry: what dental educators and learners should know. J Dent Educ. 2012;76(11):1437-42.

Scarfe WC, Farman AG, Sukovic P. Clinical applications of cone-beam computed tomography in dental practice. J Can Dent Assoc. 2006;72(1):75–80.

Worthington P, Rubenstein J, Hatcher DC. The role of cone-beam computed tomography in the planning and placement of implants. J Am Dent Assoc. 2010;141 Suppl 3:19S-24S. doi: 10.14219/jada.archive.2010.0358.

Kiarudi AH, Eghbal MJ, Safi Y, Aghdasi MM, Fazlyab M. The applications of cone-beam computed tomography in endodontics: a review of literature. Iran Endod J. 2015;10(1):16-25.

Van Assche N, van Steenberghe D, Guerrero ME, Hirsch E, Schutyser F, Quirynen M, et al. Accuracy of implant placement based on pre-surgical planning of three-dimensional cone-beam images: a pilot study. J Clin Periodontol. 2007;34(9):816-21. doi: 10.1111/j.1600-051X.2007.01110.x.

Wilde F, Schramm A. Computerassistierte Gesichtsschädelrekonstruktion : Planung und Umsetzung in der klinischen Routine [Computer-aided reconstruction of the facial skeleton : Planning and implementation in clinical routine]. HNO. 2016;64(9):641-9. doi: 10.1007/s00106-016-0220-0.

Somji SH, Valladares A, Ho Kim S, Cheng Paul Yu Y, Froum SJ. The use of 3D models to improve sinus augmentation outcomes - A case report. Singapore Dent J. 2017;38:63-70. doi: 10.1016/j.sdj.2017.10.002.

Ursan ID, Chiu L, Pierce A. Three-dimensional drug printing: a structured review. J Am Pharm Assoc (2003). 2013;53(2):136-44. doi: 10.1331/JAPhA.2013.12217.

Yusa K, Yamanochi H, Takagi A, Iino M. Three-dimensional printing model as a tool to assist in surgery for large mandibular tumour: a case report. J Oral Maxillofac Res. 2017;8(2):e4. doi: 10.5037/jomr.2017.8204.

Jacobo O, Giachero V, Hartwig, D, Mantrana, G. Three-dimensional printing modeling: application in maxillofacial and hand fractures and resident training. Eur J Plast Surg. 2017;41:137-46.

Dessoky N, El-Mahallawy A, Fahmy M, Khalil M. Use of custom made PEEK plates for treatment of mandibular fracture. Alexandria Dent J. 2020; 45(2):125-8. doi:10.21608/adjalexu.2020.88449.

Aleid W, Watson J, Sidebottom AJ, Hollows P. Development of in-house rapid manufacturing of three-dimensional models in maxillofacial surgery. Br J Oral Maxillofac Surg. 2010;48(6):479-81. doi: 10.1016/j.bjoms.2009.09.002.

Patel N, Kim B, Zaid W. Use of virtual surgical planning for simultaneous maxillofacial osteotomies and custom polyetheretherketone implant in secondary orbito-frontal reconstruction: importance of restoring orbital volume. J Craniofac Surg. 2017;28(2):387-90. doi: 10.1097/SCS.0000000000003313.

Brix F, Lambrecht JT. Preparation of individual skull models based on computed tomographic information. Fortschr Kiefer Gesichtschir. 1987;32:74-7.

Lee HJ, Choi JW, Chung IW. Secondary skull reconstruction with autogenous split calvarial bone grafts versus nonautogenous materials. J Craniofac Surg. 2014;25(4):1337-40. doi: 10.1097/SCS.0000000000000806.

Chen ST, Chang CJ, Su WC, Chang LW, Chu IH, Lin MS. 3-D titanium mesh reconstruction of defective skull after frontal craniectomy in traumatic brain injury. Injury. 2015;46(1):80-5. doi: 10.1016/j.injury.2014.09.019.

Biron VL, Gross M, Broad R, Seikaly H, Wright ED. Radial forearm free flap with titanium mesh sandwich reconstruction in complex anterior skull base defects. J Craniofac Surg. 2012;23(6):1763-5. doi: 10.1097/SCS.0b013e3182653f29.

Abou-ElFetouh A, Barakat A, Abdel-Ghany K. Computer-guided rapid-prototyped templates for segmental mandibular osteotomies: a preliminary report. Int J Med Robot. 2011;7(2):187-92. doi: 10.1002/rcs.387.

Thankappan K, Trivedi NP, Subash P, Pullara SK, Peter S, Kuriakose MA, et al. Three-dimensional computed tomography-based contouring of a free fibula bone graft for mandibular reconstruction. J Oral Maxillofac Surg. 2008;66(10):2185-92. doi: 10.1016/j.joms.2008.01.035.

White SC, Heslop EW, Hollender LG, Mosier KM, Ruprecht A, Shrout MK, et al. Parameters of radiologic care: An official report of the American Academy of Oral and Maxillofacial Radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;91(5):498-511. doi: 10.1067/moe.2001.114380.

Sarment DP, Misch CE. Scannographic templates for novel pre-implant planning methods. Int Mag Oral Implantol. 2002;3:16-22.

Job S, Bhat V, Naidu EM. In vivo evaluation of crestal bone heights following implant placement with 'flapless' and 'with-flap' techniques in sites of immediately loaded implants. Indian J Dent Res. 2008;19(4):320-5. doi: 10.4103/0970-9290.44535.

Li B, Shen S, Jiang W, Li J, Jiang T, Xia JJ, et al. A new approach of splint-less orthognathic surgery using a personalized orthognathic surgical guide system: A preliminary study. Int J Oral Maxillofac Surg. 2017;46(10):1298-305. doi: 10.1016/j.ijom.2017.03.025.

Klammert U, Böhm H, Schweitzer T, Würzler K, Gbureck U, Reuther J, et al. Multi-directional Le Fort III midfacial distraction using an individual prefabricated device. J Craniomaxillofac Surg. 2009;37(4):210-5. doi: 10.1016/j.jcms.2008.11.011.

Choi JW, Koh KS, Hong JP, Hong SH, Ra Ys. One-piece frontoorbital advancement with distraction but without a supraorbital bar for coronal craniosynostosis. J Plast Reconstr Aesthet Surg. 2009;62(9):1166-73. doi: 10.1016/j.bjps.2007.12.077.

Zinser MJ, Mischkowski RA, Sailer HF, Zöller JE. Computer-assisted orthognathic surgery: feasibility study using multiple CAD/CAM surgical splints. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(5):673-87. doi: 10.1016/j.oooo.2011.11.009.

Wolford LM, Mehra P. Custom-made total joint prostheses for temporomandibular joint reconstruction. Proc (Bayl Univ Med Cent). 2000;13(2):135-8. doi: 10.1080/08998280.2000.11927656.

Ackland DC, Robinson D, Redhead M, Lee PVS, Moskaljuk A, Dimitroulis G. A personalized 3D-printed prosthetic joint replacement for the human temporomandibular joint: From implant design to implantation. J Mech Behav Biomed Mater. 2017;69:404-11. doi: 10.1016/j.jmbbm.2017.01.048.

Mirkhalaf M, Men Y, Wang R, No Y, Zreiqat H. Personalized 3D printed bone scaffolds: A review. Acta Biomater. 2022:S1742-7061(22)00218-5. doi: 10.1016/j.actbio.2022.04.014.

Tsai KY, Lin HY, Chen YW, Lin CY, Hsu TT, Kao CT. Laser sintered magnesium-calcium silicate/poly-ε-caprolactone scaffold for bone tissue engineering. Materials (Basel). 2017 Jan 13;10(1):65. doi: 10.3390/ma10010065.

Athirasala A, Tahayeri A, Thrivikraman G, França CM, Monteiro N, Tran V, et al. A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry. Biofabrication. 2018;10(2):024101. doi: 10.1088/1758-5090/aa9b4e.

Almela T, Al-Sahaf S, Brook IM, Khoshroo K, Rasoulianboroujeni M, Fahimipour F, et al. 3D printed tissue engineered model for bone invasion of oral cancer. Tissue Cell. 2018;52:71-7. doi: 10.1016/j.tice.2018.03.009.

Lim CG, Campbell DI, Cook N, Erasmus J. A case series of rapid prototyping and intraoperative imaging in orbital reconstruction. Craniomaxillofac Trauma Reconstr. 2015;8(2):105-10. doi: 10.1055/s-0034-1395384.

Sieira Gil R, Roig AM, Obispo CA, Morla A, Pagès CM, Perez JL. Surgical planning and microvascular reconstruction of the mandible with a fibular flap using computer-aided design, rapid prototype modelling, and precontoured titanium reconstruction plates: a prospective study. Br J Oral Maxillofac Surg. 2015;53(1):49-53. doi: 10.1016/j.bjoms.2014.09.015.

Yamada H, Nakaoka K, Horiuchi T, Kumagai K, Ikawa T, Shigeta Y, et al. Mandibular reconstruction using custom-made titanium mesh tray and particulate cancellous bone and marrow harvested from bilateral posterior ilia. J Plast Surg Hand Surg. 2014;48(3):183-90. doi: 10.3109/2000656X.2013.848809.

Gerbino G, Zavattero E, Zenga F, Bianchi FA, Garzino-Demo P, Berrone S. Primary and secondary reconstruction of complex craniofacial defects using polyetheretherketone custom-made implants. J Craniomaxillofac Surg. 2015;43(8):1356-63. doi: 10.1016/j.jcms.2015.06.043.




DOI: http://dx.doi.org/10.14748/ssmd.v8i2.8548

Refbacks

Article Tools
Email this article (Login required)
About The Authors

Izabella Petrova
Medical University of Varna
Bulgaria

Department of Oral Surgery, Faculty of Dental Medicine

Elitsa Dzhongova
Medical University of Varna
Bulgaria

Department of Oral Surgery, Faculty of Dental Medicine

Velimira Georgieva
Medical University of Varna
Bulgaria

Department of Oral Surgery, Faculty of Dental Medicine

Font Size


|