Scientific Online Resource System

Scripta Scientifica Medicinae Dentalis

Bone histomorphometry as a diagnostic tool. A review article

Ralitsa Yotsova, Stefan Peev, Nikoleta Ivanova



Various diagnostic modalities are used in the study of bone structure and metabolism. These include radiological examinations, laboratory and biochemical testing, histological and histomorphometric assessments, immunohistochemistry, and some non-invasive techniques. Bone histomorphometry is regarded as the gold standard in the diagnostics of bone-related conditions. It is a reliable method for detailed quantitative assessment of bone microarchitecture and physiology. It allows observation of cell types and their activity and provides essential information on bone healing, modeling, and remodeling.    


The present review aims to summarize the applications and limitations of bone histomorphometry and define its role in the diagnostics, monitoring, and treatment of various bone-related conditions.


An electronic search using Google Scholar, PubMed, Scopus, and ScienceDirect was conducted up to July 2022. The article is based on the existing scientific database and includes 198 studies. It summarizes the current knowledge on bone histomorphometry, highlights its advantages and limitations, and gives some recommendations for further research.

Bone histomorphometry is a key diagnostic tool in the field of bone research. It is used for the detection and monitoring of metabolic bone diseases, for establishing the safety of the pharmaceutical agents that affect bone metabolism, and for the effects of different biomaterials, used for guided bone regeneration and implant treatment.


Bone histomorphometry is applied in various scientific fields. Although some innovative non-invasive techniques have been suggested, the method remains a significant component in the study of bone structure and physiology.


bone histomorphometry, histologic sections, bone diseases

Full Text


Villanueva AR, Jaworski ZF, Hitt O, Sarnsethsiri P, Frost HM. Cellular-level bone resorption in chronic renal failure and primary hyperparathyroidism. A tetracycline-based evaluation. Calcif Tissue Res. 1970;5(4):288-304. doi: 10.1007/BF02017559.

Meunier P, Aaron J, Edouard C, Vignon G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res. 1971;80:147-54. doi: 10.1097/00003086-197110000-00021.

Frost, Harold. Skeletal histomorphometry and biotechnology in 2001 AD: Quo vadis?. J Histotechnol. 2001;24(2):89-93. doi: 10.1179/014788801794812561.

Recker RR, Kimmel DB, Dempster D, Weinstein RS, Wronski TJ, Burr DB. Issues in modern bone histomorphometry. Bone. 2011;49(5):955-64. doi: 10.1016/j.bone.2011.07.017.

Rauch F. Watching bone cells at work: what we can see from bone biopsies. Pediatr Nephrol. 2006;21(4):457-62. doi: 10.1007/s00467-006-0025-6.

Frost HM, Villanueva AR, Roth H. Measurement of bone formation in a 57-year-old man by means of tetracyclines. Henry Ford Hosp Med Bull. 1960;8:239–54.

Compston J. Bone histomorphometry: techniques and interpretation. In: Recker RR, editor. Boca Raton: CRC Press; 1983. p. 177-97.

Parfitt AM. Terminology and symbols in bone morphometry. In: Jaworski ZFG, editor Proceedings of the First International Workshop on Bone Morphometry. Ottawa: Ottawa University Press; 1976. p. 331–5.

Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 1987;2(6):595-610. doi: 10.1002/jbmr.5650020617.

Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 2013;28(1):2-17. doi: 10.1002/jbmr.1805.

Lespessailles E, Chappard C, Bonnet N, Benhamou CL. Imaging techniques for evaluating bone microarchitecture. Joint Bone Spine. 2006;73(3):254-61. doi: 10.1016/j.jbspin.2005.12.002.

Frost HM. Mathematical elements of lamellar bone remodeling. Springfield, IL: Charles C Thomas, 1964.

Revell PA. Histomorphometry of bone. J Clin Pathol. 1983;36(12):1323-31. doi: 10.1136/jcp.36.12.1323.

Giroux JM, Courpron P, Meunier P. Histomorphometrie de l'osteopenie physiologique senile. Monographie du laboratoire de Researches sur I'Histodynamique osseuse. Lyon, 1975.

Meunier P, Edouard C. Quantification of osteoid tissue in trabecular bone. Methodology and results in normal iliac bone. In: Jaworski ZFG, ed. Proceedings of the 1st Workshop on Bone Morphometry. Ottawa: University of Ottawa Press; 1976. p. 191-6.

Meunier PJ, Edouard C, Courpron P, Toussaint F. Morphometric analysis of osteoid in iliac trabecular bone. Methodology. Dynamical significance of the osteoid parameters. Vitamin D and problems related to uraemic bone disease. New York: Walter de Gruyter. 1975:149-55.

Rasmussen H, Bordier P. The physiological and cellular basis of metabolic bone disease. Baltimore: Williams and Wilkins; 1974.

Meunier P, Edouard C, Richard D, Laurent J. Histomorphometry of osteoid tissue. The hyperosteoidoses. In: Meunier PJ, ed. Bone histomorphometry. 2nd International Workshop. Societe de la Nouvelle Imprimerie Fournie; Toulouse, France, 1976:249-62.

Irving JT. A histological stain for newly calcified tissues. Nature. 1958;181(4610):704-5. doi: 10.1038/181704a0.

Irving JT. The sudanophil material at sites of calcification. Arch Oral Biol. 1963;8:735-45. doi: 10.1016/0003-9969(63)90005-0.

Matrajt J, Hioco D. Solochrome cyanine R as an indicator dye of bone morphology. Stain Technol 1972;41(2):97-100. doi: 10.3109/10520296609116287.

Milch RA, Hall DP, Tobie JE. Fluorescence of tetracycline antibiotics in bone. J Bone Joint Surg Am. 1958;40-А(4):897-910.

Baud CA, Dupont DH. Histologie intrastructurale sur la bifluorescence du tissu, osseux tonite par les t6tracyclines. C R Seances Acad Sci 1962;254:3129-30.

Harris WH, Jackson RH, Jowsey J. The in vivo distribution of tetracycline in canine bone. J Bone Joint Surg Am. 1962;44-A:1308-20.

Malhan D, Muelke M, Rosch S, Schaefer AB, Merboth F, Weisweiler D, et al. An Optimized Approach to Perform Bone Histomorphometry. Front Endocrinol (Lausanne). 2018;9:666. doi: 10.3389/fendo.2018.00666.

Arganda-Carreras I, Kaynig V, Rueden C, Eliceiri KW, Schindelin J, Cardona A, et al. Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics. 2017;33(15):2424–6. doi: 10.1093/bioinformatics/btx180.

Polig E, Jee WS. Automated trabecular bone histomorphometry. Bone. 1985;6(5):357–59. doi: 10.1016/8756-3282(85)90331-x.

Zhang L, Chang M, Beck CA, Schwarz EM, Boyce BF. Analysis of new bone, cartilage, and fibrosis tissue in healing murine allografts using whole slide imaging and a new automated histomorphometric algorithm. Bone Res. 2016;4:15037. doi: 10.1038/boneres.2015.37.

van ’t Hof RJ, Rose L, Bassonga E, Daroszewska A. Open source software for semi-automated histomorphometry of bone resorption and formation parameters. Bone. 2017;99:69–79. doi: 10.1016/j.bone.2017. 03.051.

Rauch F, Travers R, Parfitt AM, Glorieux FH. Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone. 2000;26(6):581–89. doi: 10.1016/S8756-3282(00)00269-6.

Arlot ME, Delmas PD, Chappard D, Meunier PJ. Trabecular and endocortical bone remodeling in postmenopausal osteoporosis: comparison with normal postmenopausal women. Osteoporos Int. 1990;1(1):41-9. doi: 10.1007/BF01880415.

Eriksen EF, Hodgson SF, Eastell R, Cedel SL, O’Fallon WM, Riggs BL. Cancellous bone remodeling in type I postmenopausal osteoporosis: quantitative assessment of rates of bone formation, resorption, and bone loss at tissue and cellular levels. J Bone Miner Res. 1990;5(4):311. doi: 10.1002/jbmr.5650050402.

Kimmel DB, Recker RR, Gallagher JC, Vaswani AS, Aloia JF. A comparison of iliac bone histomorphometry data in postmenopausal osteoporotic and normal subjects. Bone Miner. 1990;11(2):217-35. doi: 10.1016/0169-6009(90)90061-j.

Parisien M, Cosman F, Mellish RWE, Schnitzer M, Nieves J, Silverberg SJ, et al. Bone structure in postmenopausal hyperparathyroid, osteoporotic and normal women. J Bone Min Res. 1995;10(9):1393-9. doi: 10.1002/jbmr.5650100917.

Legrand E, Chappard D, Pascaretti C, Duquenne M, Krebs S, Rohmer V, et al. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res. 2000;15(1):13-9. doi: 10.1359/jbmr.2000.15.1.13.

Parfitt AM, Qiu S, Rao DS. The mineralization index—a new approach to the histomorphometric appraisal of osteomalacia. Bone. 2004;35(1):320-5. doi: 10.1016/j.bone.2004.02.016.

Siris ES, Clemens TL, Dempster DW, Shane E, Segre GV, Lindsay R, et al. Tumor-induced osteomalacia. Kinetics of calcium, phosphorus, and vitamin D metabolism and characteristics of bone histomorphometry. Am J Med. 1987;82(2):307-12. doi: 10.1016/0002-9343(87)90075-1.

Parfitt AM, Podenphant J, Villanueva AR, Frame B. Metabolic bone disease with and without osteomalacia after intestinal bypass: a bone histomorphometry study. Bone. 1985;6(4):211-20. doi: 10.1016/8756-3282(85)90003-1.

Eriksen EF, Mosekilde L, Melsen F. Trabecular bone remodeling and balance in primary hyperparathyroidism. Bone. 1986;7(3):213-21. doi: 10.1016/8756-3282(86)90020-7.

Christiansen P, Steiniche T, Brockstedt H, Mosekilde L, Hessov I, Melsen F. Primary hyperparathyroidism: iliac crest trabecular bone volume, structure, remodeling and balance evaluated by histomorphometric methods. Bone. 1993;14(5):755-62. doi: 10.1016/8756-3282(93)90207-Q.

Dempster DW, Parisien M, Silverberg SJ, Liang X-G, Schnitzer M, Shen V, et al. On the mechanism of cancellous bone preservation in postmenopausal women with mild primary hyperparathyroidism. J Clin Endocrinol Metab. 1999;84(5):1562-6. doi: 10.1210/jcem.84.5.5652.

Langdahl BL, Mortensen L, Vesterby A, Eriksen EF, Charles P. Bone histomorphometry in hypoparathyroid patients treated with vitamin D. Bone. 1996;18(2):103-8. doi: 10.1016/8756-3282(95)00443-2.

Rubin MR, Dempster DW, Zhou H, Shane E, Nickolas T, Sliney J Jr, et al. Dynamic and structural properties of the skeleton in hypoparathyroidism. J Bone Miner Res. 2008;23(12):2018-24. doi: 10.1359/jbmr.080803.

Moser E, Sikjaer T, Mosekilde L, Rejnmark L. Bone indices in thyroidectomized patients on long-term substitution therapy with levothyroxine assessed by DXA and HR-pQCT. J Thyroid Res. 2015;2015:796871. doi: 10.1155/2015/796871.

Allain TJ, Thomas MR, McGregor AM, Salisbury JR. A histomorphometric study of bone changes in thyroid dysfunction in rats. Bone. 1995;16(5):505-9. doi: 10.1016/8756-3282(95)00074-n.

Bassett JH, Williams GR. Role of thyroid hormones in skeletal development and bone maintenance. Endocr Rev. 2016;37(2):135-87. doi: 10.1210/er.2015-1106.

Eriksen EF, Mosekilde L, Melsen F. Kinetics of trabecular bone resorption and formation in hypothyroidism: evidence for a positive balance per remodeling cycle. Bone. 1986;7(2):101–8. doi: 10.1016/8756-3282(86)90681-2.

Mosekilde L, Melsen F. Morphometric and dynamic studies of bone changes in hypothyroidism. Acta Pathol Microbiol Scand A. 1978;86(1):56–62. doi: 10.1111/j.1699-0463.1978.tb02012.x.

Eriksen EF, Mosekilde L, Melsen F. Trabecular bone remodeling and bone balance in hyperthyroidism. Bone. 1985;6(6):421– 8. doi: 10.1016/8756-3282(85)90218-2.

Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006;69(11):1945-53. doi: 10.1038/

Meunier PJ, Coindre JM, Edouard CM, Arlot ME. Bone histomorphometry in Paget's disease. Quantitative and dynamic analysis of pagetic and nonpagetic bone tissue. Arthritis Rheum. 1980;23(10):1095-103. doi: 10.1002/art.1780231005.

Seitz S, Priemel M, Zustin J, Beil FT, Semler J, Minne H, et al. Paget's disease of bone: histologic analysis of 754 patients. J Bone Miner Res. 2009;24(1):62-9. doi: 10.1359/jbmr.080907.

Haworth CS, Webb AK, Egan JJ, Selby PL, Hasleton PS, Bishop PW, et al. Bone histomorphometry in adult patients with cystic fibrosis. Chest. 2000;118(2):434-9. doi: 10.1378/chest.118.2.434.

Haworth CS. Impact of cystic fibrosis on bone health. Curr Opin Pulm Med. 2010;16(6):616-22. doi: 10.1097/MCP.0b013e32833e2e94. .

Elkin SL, Vedi S, Bord S, Garrahan NJ, Hodson ME, Compston JE. Histomorphometric analysis of bone biopsies from the iliac crest of adults with cystic fibrosis. Am J Respir Crit Care Med. 2002;166(11):1470-4. doi: 10.1164/rccm.200206-578OC.

Marquette M, Haworth CS. Bone health and disease in cystic fibrosis. Paediatr Respir Rev. 2016;20 Suppl:2-5. doi: 10.1016/j.prrv.2016.06.003.

Rauch F, Travers R, Parfitt AM, Glorieux FH. Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone. 2000;26(6):581-9. doi: 10.1016/s8756-3282(00)00269-6.

Ste-Marie LG, Charhon SA, Edouard C, Chapuy MC, Meunier PJ. Iliac bone histomorphometry in adults and children with osteogenesis imperfecta. J Clin Pathol. 1984;37(10):1081-9. doi: 10.1136/jcp.37.10.1081.

Barreto FC, Barreto DV, Moyses RM, Neves CL, Jorgetti V, Draibe SA, et al. Osteoporosis in hemodialysis patients revisited by bone histomorphometry: a new insight into an old problem. Kidney Int. 2006;69(10):1852-7. doi: 10.1038/

Behets GJ, Spasovski G, Sterling LR, Goodman WG, Spiegel DM, De Broe ME, et al. Bone histomorphometry before and after long-term treatment with cinacalcet in dialysis patients with secondary hyperparathyroidism. Kidney Int. 2015;87(4):846-56. doi: 10.1038/ki.2014.349.

Andrade MC, Carvalhaes JT, Carvalho AB, Lazarretti-Castro M, Brandão C. Bone mineral density and bone histomorphometry in children on long-term dialysis. Pediatr Nephrol. 2007;22(10):1767-72. doi: 10.1007/s00467-007-0546-7.

Keronen S, Martola L, Finne P, Burton IS, Kröger H, Honkanen E. Changes in bone histomorphometry after kidney transplantation. Clin J Am Soc Nephrol. 2019;14(6):894-903. doi: 10.2215/CJN.09950818.

Salam S, Gallagher O, Hughes D, Khwaja A, Eastell R. The role of static bone histomorphometry in diagnosing renal osteodystrophy. Bone. 2021;142:115689. doi: 10.1016/j.bone.2020.115689.

Ferreira A. Development of renal bone disease. Eur J Clin Invest. 2006;36 Suppl 2:2-12. doi: 10.1111/j.1365-2362.2006.01661.x.

Ferreira A, Saraiva M, Behets G, Macedo A, Galvão M, D'Haese P, et al. Evaluation of bone remodeling in hemodialysis patients: serum biochemistry, circulating cytokines and bone histomorphometry. J Nephrol. 2009;22:783-93.

Ferreira A, Frazao JM, Monier-Faugere MC, et al. Effects of sevelamer hydrochloride and calcium carbonate on renal osteodystrophy in hemodialysis patients. J Am Soc Nephrol. 2008;19(2):405-12. doi: 10.1681/ASN.2006101089.

Ott SM. Bone histomorphometry in renal osteodystrophy. Semin Nephrol. 2009;29(2):122-32. doi: 10.1016/j.semnephrol.2009.01.005.

Ferreira A, Drueke TB. Biological markers in the diagnosis of the different forms of renal osteodystrophy. Am J Med Sci. 2000;320(2):85-9. doi: 10.1097/00000441-200008000-00004.

Martins L, Queiros J, Ferreira A, Henriques AC, Sarmento AM, Pereira MC, et al. Renal osteodystrophy: histologic evaluation after renal transplantation. Transplant Proc. 2000;32(8):2599-2601. doi: 10.1016/s0041-1345(00)01802-9.

Sherrard DJ, Hercz G, Pei Y, Greenwood C, Manuel A, Saiphoo C, et al. The spectrum of bone disease in end-stage renal failure: an evolving disorder. Kidney Int. 1993;43(2):436-42. doi: 10.1038/ki.1993.64.

Hercz G, Pei Y, Greenwood C, Manuel A, Saiphoo C, Goodman WG, et al. Aplastic osteodystrophy without aluminum: the role of “suppressed” parathyroid function. Kidney Int. 1993;44(4):860-6. doi: 10.1038/ki.1993.323.

Miller PD. The role of bone biopsy in patients with chronic renal failure. Clin J Am Soc Nephrol. 2008; 3 Suppl 3(Suppl 3):S140-50. doi: 10.2215/CJN.02430508.

Guichelaar MM, Malinchoc M, Sibonga J, Clarke BL, Hay JE. Bone metabolism in advanced cholestatic liver disease: analysis by bone histomorphometry. Hepatology. 2002;36(4 Pt 1):895-903. doi: 10.1053/jhep.2002.36357.

Guichelaar MM, Malinchoc M, Sibonga JD, Clarke BL, Hay JE. Bone histomorphometric changes after liver transplantation for chronic cholestatic liver disease. J Bone Miner Res. 2003;18(12):2190-9. doi: 10.1359/jbmr.2003.18.12.2190.

Hay JE. Bone disease in cholestatic liver disease. Gastroenterology. 1995;108(1):276-83. doi: 10.1016/0016-5085(95)90033-0.

Gasser RW. Cholestasis and metabolic bone disease - a clinical review. Wien Med Wochenschr. 2008;158(19-20):553-7. doi: 10.1007/s10354-008-0594-z.

Andrade VFC, Chula DC, Sabbag FP, Cavalheiro DDDS, Bavia L, Ambrósio AR, et al. Bone histomorphometry in young patients with type 2 diabetes is affected by disease control and chronic complications. J Clin Endocrinol Metab. 2020;105(2):dgz070. doi: 10.1210/clinem/dgz070.

Armas LA, Akhter MP, Drincic A, Recker RR. Trabecular bone histomorphometry in humans with Type 1 Diabetes Mellitus. Bone. 2012;50(1):91-6. doi: 10.1016/j.bone.2011.09.055.

Moreira CA, Dempster DW. Bone histomorphometry in diabetes mellitus. Osteoporos Int. 2015;26(11):2559-60. doi: 10.1007/s00198-015-3258-z.

Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM. Bone loss and bone turnover in diabetes. Diabetes. 1995;44(7):775-82. doi: 10.2337/diab.44.7.775.

Dalle Carbonare L, Micheletti V, Cosaro E, Valenti MT, Mottes M, Francia G, et al. Bone histomorphometry in acromegaly patients with fragility vertebral fractures. Pituitary. 2018;21(1):56-64. doi: 10.1007/s11102-017-0847-1.

Halse J, Melsen F, Mosekilde L. Iliac crest bone mass and remodelling in acromegaly. Acta Endocrinol (Copenh). 1981;97(1):18-22. doi: 10.1530/acta.0.0970018.

Delling G, Schulz A, Stahnke N, Nowakowski H. Histomorphometric investigation of cancellous bone in acromegaly. Eur J Endocrinol. 1973;71(4):S101. doi: 10.1530/acta.0.072S101

Mahachoklertwattana P, Sirikulchayanonta V, Chuansumrit A, Karnsombat P, Choubtum L, Sriphrapradang A, et al. Bone histomorphometry in children and adolescents with beta-thalassemia disease: iron-associated focal osteomalacia. J Clin Endocrinol Metab. 2003;88(8):3966-72. doi: 10.1210/jc.2002-021548.

Domrongkitchaiporn S, Sirikulchayanonta V, Angchaisuksiri P, Stitchantrakul W, Kanokkantapong C, Rajatanavin R. Abnormalities in bone mineral density and bone histology in thalassemia. J Bone Miner Res. 2003;18(9):1682-8. doi: 10.1359/jbmr.2003.18.9.1682.

Chavassieux P, Chapurlat R, Portero-Muzy N, Roux JP, Garcia P, Brown JP, et al. Bone-forming and antiresorptive effects of romosozumab in postmenopausal women with osteoporosis: Bone histomorphometry and microcomputed tomography analysis after 2 and 12 months of treatment. J Bone Miner Res. 2019;34(9):1597-608. doi: 10.1002/jbmr.3735.

Arlot ME, Jiang Y, Genant HK, Zhao J, Burt-Pichat B, Roux JP, et al. Histomorphometric and microCT analysis of bone biopsies from postmenopausal osteoporotic women treated with strontium ranelate. J Bone Miner Res. 2008;23(2):215-22. doi: 10.1359/jbmr.071012.

Reid IR, Miller PD, Brown JP, Kendler DL, Fahrleitner-Pammer A, Valter I, et al. Effects of denosumab on bone histomorphometry: the FREEDOM and STAND studies. J Bone Miner Res. 2010;25(10):2256-65. doi: 10.1002/jbmr.149.

Cosman F, Dempster DW, Nieves JW, Zhou H, Zion M, Roimisher C, et al. Effect of teriparatide on bone formation in the human femoral neck. J Clin Endocrinol Metab. 2016;101(4):1498-505. doi: 10.1210/jc.2015-3698.

Vedi S, Compston JE. The effects of long-term hormone replacement therapy on bone remodeling in postmenopausal women. Bone. 1996;19(5):535-9. doi: 10.1016/s8756-3282(96)00227-x.

Eriksen EF, Langdahl B, Vesterby A, Rungby J, Kassem M. Hormone replacement therapy prevents osteoclastic hyperactivity: A histomorphometric study in early postmenopausal women. J Bone Miner Res. 1999;14(7):1217-21. doi: 10.1359/jbmr.1999.14.7.1217.

Vedi S, Purdie DW, Ballard P, Bord S, Cooper AC, Compston JE. Bone remodeling and structure in postmenopausal women treated with long-term, high-dose estrogen therapy. Osteoporos Int. 1999;10(1):52-8. doi: 10.1007/s001980050194.

Khastgir G, Studd J, Holland N, Alaghband-Zadeh J, Fox S, Chow J. Anabolic effect of estrogen replacement on bone in postmenopausal women with osteoporosis: histomorphometric evidence in a longitudinal study. J Clin Endocrinol Metab. 2001;86(1):289-95. doi: 10.1210/jcem.86.1.7161.

Dempster DW, Cosman F, Kurland ES, Zhou H, Nieves J, Woelfert L, et al. Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J Bone Miner Res. 2001;16(10):1846-53. doi: 10.1359/jbmr.2001.16.10.1846.

Hodsman AB, Kisiel M, Adachi JD, Fraher LJ, Watson PH. Histomorphometric evidence for increased bone turnover without change in cortical thickness or porosity after 2 years of cyclical hPTH(1-34) therapy in women with severe osteoporosis. Bone. 2000;27(2):311-8. doi: 10.1016/s8756-3282(00)00316-1.

Ma YL, Zeng Q, Donley DW, Ste-Marie LG, Gallagher JC, Dalsky GP, et al. Teriparatide increases bone formation in modeling and remodeling osteons and enhances IGF-II immunoreactivity in postmenopausal women with osteoporosis. J Bone Miner Res. 2006;21(6):855-64. doi: 10.1359/jbmr.060314.

Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med. 2004;350(5):459-68. doi: 10.1056/NEJMoa022436.

Lindsay R, Zhou H, Cosman F, Nieves J, Dempster DW, Hodsman AB. Effects of a one-month treatment with PTH(1-34) on bone formation on cancellous, endocortical, and periosteal surfaces of the human ilium. J Bone Miner Res. 2007;22(4):495-502. doi: 10.1359/jbmr.070104.

Chappard D, Legrand E, Basle MF, Fromont P, Racineux JL, Rebel A, et al. Altered trabecular architecture induced by corticosteroids: a bone histomorphometric study. J Bone Miner Res. 1996;11(5):676-85. doi: 10.1002/jbmr.5650110516.

Stellon AJ, Webb A, Compston JE. Bone histomorphometry and structure in corticosteroid treated chronic active hepatitis. Gut. 1988;29(3):378-84. doi: 10.1136/gut.29.3.378.

Sambrook PN, Jones G. Corticosteroid osteoporosis. Br J Rheumatol. 1995;34(1):8-12. doi: 10.1093/rheumatology/34.1.8.

Hodgson SF. Corticosteroid-induced osteoporosis. Endocrinol Metab Clin North Am. 1990;19(1):95-111.

Dempster DW, Brown JP, Fahrleitner-Pammer A, Kendler D, Rizzo S, Valter I, et al. Effects of long-term denosumab on bone histomorphometry and mineralization in women with postmenopausal osteoporosis. J Clin Endocrinol Metab. 2018;103(7):2498-509. doi: 10.1210/jc.2017-02669.

Kostenuik PJ, Smith SY, Jolette J, Schroeder J, Pyrah I, Ominsky MS. Decreased bone remodeling and porosity are associated with improved bone strength in ovariectomized cynomolgus monkeys treated with denosumab, a fully human RANKL antibody. Bone. 2011;49(2):151-61. doi: 10.1016/j.bone.2011.03.769.

Chavassieux PM, Arlot ME, Reda C, Wei L, Yates AJ, Meunier PJ. Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis. J Clin Invest. 1997;100(6):1475-80. doi: 10.1172/JCI119668.

Chavassieux PM, Arlot ME, Roux JP, Portero N, Daifotis A, Yates AJ, et al. Effects of alendronate on bone quality and remodeling in glucocorticoid-induced osteoporosis: a histomorphometric analysis of transiliac biopsies. J Bone Miner Res. 2000;15(4):754-62. doi: 10.1359/jbmr.2000.15.4.754.

Eriksen EF, Melsen F, Sod E, Barton I, Chines A. Effects of long-term risedronate on bone quality and bone turnover in women with postmenopausal osteoporosis. Bone. 2002;31(5):620-5. doi: 10.1016/s8756-3282(02)00869-4.

Recker RR, Weinstein RS, Chesnut CH 3rd, Schimmer RC, Mahoney P, Hughes C, et al. Histomorphometric evaluation of daily and intermittent oral ibandronate in women with postmenopausal osteoporosis: results from the BONE study. Osteoporos Int. 2004;15(3):231-7. doi: 10.1007/s00198-003-1530-0.

Recker RR, Ste-Marie LG, Langdahl B, Czerwinski E, Bonvoisin B, Masanauskaite D, et al. Effects of intermittent intravenous ibandronate injections on bone quality and micro-architecture in women with postmenopausal osteoporosis: the DIVA study. Bone. 2010;46(3):660-5. doi: 10.1016/j.bone.2009.11.004.

Recker RR, Delmas PD, Halse J, Reid IR, Boonen S, García-Hernandez PA, et al. Effects of intravenous zoledronic acid once yearly on bone remodeling and bone structure. J Bone Miner Res. 2008;23(1):6-16. doi: 10.1359/jbmr.070906.

Priemel M, von Domarus C, Klatte TO, Kessler S, Schlie J, Meier S, et al. Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J Bone Miner Res. 2010;25(2):305-12. doi: 10.1359/jbmr.090728.

Weinstein RS, Underwood JL, Hutson MS, DeLuca HF. Bone histomorphometry in vitamin D-deficient rats infused with calcium and phosphorus. Am J Physiol. 1984;246(6 Pt 1):E499-505. doi: 10.1152/ajpendo.1984.246.6.E499.

Mehat MZ, Shuid AN, Mohamed N, Muhammad N, Soelaiman IN. Beneficial effects of vitamin E isomer supplementation on static and dynamic bone histomorphometry parameters in normal male rats. J Bone Miner Metab. 2010;28(5):503-9. doi: 10.1007/s00774-010-0159-2.

Bisballe S, Eriksen EF, Melsen F, Mosekilde L, Sørensen OH, Hessov I. Osteopenia and osteomalacia after gastrectomy: interrelations between biochemical markers of bone remodelling, vitamin D metabolites, and bone histomorphometry. Gut. 1991;32(11):1303-7. doi: 10.1136/gut.32.11.1303.

Coen G, Mantella D, Manni M, Balducci A, Nofroni I, Sardella D, et al. 25-hydroxyvitamin D levels and bone histomorphometry in hemodialysis renal osteodystrophy. Kidney Int. 2005;68(4):1840-8. doi: 10.1111/j.1523-1755.2005.00603.x.

Stout SD, Dietze WH, Işcan MY, Loth SR. Estimation of age at death using cortical histomorphometry of the sternal end of the fourth rib. J Forensic Sci. 1994;39(3):778-84.

Crowder C, Heinrich J, Stout SD. Rib histomorphometry for adult age estimation. Methods Mol Biol. 2012;915:109-27. doi: 10.1007/978-1-61779-977-8_7.

Andronowski JM, Cole ME. Current and emerging histomorphometric and imaging techniques for assessing age-at-death and cortical bone quality. WIREs Forensic Sci. 2020;e1399. doi: 10.1002/wfs2.1399.

Jensen SS, Broggini N, Hjørting-Hansen E, Schenk R, Buser D. Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res. 2006;17(3):237-43. doi: 10.1111/j.1600-0501.2005.01257.x.

Handschel J, Simonowska M, Naujoks C, Depprich RA, Ommerborn MA, Meyer U, et al. A histomorphometric meta-analysis of sinus elevation with various grafting materials. Head Face Med. 2009;5:12. doi: 10.1186/1746-160X-5-12.

Klijn RJ, Meijer GJ, Bronkhorst EM, Jansen JA. A meta-analysis of histomorphometric results and graft healing time of various biomaterials compared to autologous bone used as sinus floor augmentation material in humans. Tissue Eng Part B Rev. 2010;16(5):493-507. doi: 10.1089/ten.TEB.2010.0035.

Acocella A, Bertolai R, Colafranceschi M, Sacco R. Clinical, histological and histomorphometric evaluation of the healing of mandibular ramus bone block grafts for alveolar ridge augmentation before implant placement. J Craniomaxillofac Surg. 2010;38(3):222-30. doi: 10.1016/j.jcms.2009.07.004.

Danesh-Sani SA, Engebretson SP, Janal MN. Histomorphometric results of different grafting materials and effect of healing time on bone maturation after sinus floor augmentation: a systematic review and meta-analysis. J Periodontal Res. 2017;52(3):301-12. doi: 10.1111/jre.12402.

Haas R, Donath K, Födinger M, Watzek G. Bovine hydroxyapatite for maxillary sinus grafting: comparative histomorphometric findings in sheep. Clin Oral Implants Res. 1998;9(2):107-16. doi: 10.1034/j.1600-0501.1998.090206.x.

Alayan J, Vaquette C, Farah C, Ivanovski S. A histomorphometric assessment of collagen-stabilized anorganic bovine bone mineral in maxillary sinus augmentation - a prospective clinical trial. Clin Oral Implants Res. 2016;27(7):850-8. doi: 10.1111/clr.12694.

Borges GJ, Novaes AB Jr, Grisi MF, Palioto DB, Taba M Jr, de Souza SL. Acellular dermal matrix as a barrier in guided bone regeneration: a clinical, radiographic and histomorphometric study in dogs. Clin Oral Implants Res. 2009;20(10):1105-15. doi: 10.1111/j.1600-0501.2009.01731.x.

Schmitt CM, Doering H, Schmidt T, Lutz R, Neukam FW, Schlegel KA. Histological results after maxillary sinus augmentation with Straumann® BoneCeramic, Bio-Oss®, Puros®, and autologous bone. A randomized controlled clinical trial. Clin Oral Implants Res. 2013 May;24(5):576-85. doi: 10.1111/j.1600-0501.2012.02431.x.

Friedmann A, Dard M, Kleber B-M, Bernimoulin J-P, Bosshardt DD. Ridge augmentation and maxillary sinus grafting with a biphasic calcium phosphate: histologic and histomorphometric observations. Clin Oral Implants Res. 2009;20(7):708-14. doi: 10.1111/j.1600-0501.2009.01708.x.

Al-Hamdan K, Al-Moaber SH, Junker R, Jansen JA. Effect of implant surface properties on peri-implant bone healing: a histological and histomorphometric study in dogs. Clin Oral Implants Res. 2011;22(4):399-405. doi: 10.1111/j.1600-0501.2010.02106.x.

Rentsch C, Schneiders W, Manthey S, Rentsch B, Rammelt S. Comprehensive histological evaluation of bone implants. Biomatter. 2014;4:e27993. doi: 10.4161/biom.27993.

de Barros RRM, Novaes Jr AB, Queiroz A, de Almeida ALG. Early peri-implant endosseous healing of two implant surfaces placed in surgically created circumferential defects. A histomorphometric and fluorescence study in dogs. Clin Oral Implants Res. 2012;23(12):1340-51. doi: 10.1111/j.1600-0501.2011.02357.x.

Bornstein MM, Valderrama P, Jones AA, Wilson TG, Seibl R, Cochran DL. Bone apposition around two different sandblasted and acid-etched titanium implant surfaces: a histomorphometric study in canine mandibles. Clin Oral Implants Res. 2008;19(3):233-41. doi: 10.1111/j.1600-0501.2007.01473.x.

Caneva M, Salata LA, de Souza SS, Baffone G, Lang NP, Botticelli D. Influence of implant positioning in extraction sockets on osseointegration: histomorphometric analyses in dogs. Clin Oral Implants Res. 2010;21(1):43-9. doi: 10.1111/j.1600-0501.2009.01842.x.

Gahlert M, Roehling S, Sprecher CM, Kniha H, Milz S, Bormann K. In vivo performance of zirconia and titanium implants: a histomorphometric study in mini pig maxillae. Clin Oral Implants Res. 2012;23(3):281-6. doi: 10.1111/j.1600-0501.2011.02157.x.

Park JW, An CH, Jeong SH, Suh JY. Osseointegration of commercial microstructured titanium implants incorporating magnesium: a histomorphometric study in rabbit cancellous bone. Clin Oral Implants Res. 2012;23(3):294-300. doi: 10.1111/j.1600-0501.2010.02144.x.

Zhou W, Kuderer S, Liu Z, Ulm C, Rausch-Fan X, Tangl S. Peri-implant bone remodeling at the interface of three different implant types: a histomorphometric study in mini-pigs. Clin Oral Implants Res. 2017;28(11):1443-49. doi: 10.1111/clr.13009.

Lang NP, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Bosshardt DD. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res. 2011 Apr;22(4):349-56. doi: 10.1111/j.1600-0501.2011.02172.x.

Vasak C, Busenlechner D, Schwarze UY, Leitner HF, Munoz Guzon F, Hefti T, Schlottig F, Gruber R. Early bone apposition to hydrophilic and hydrophobic titanium implant surfaces: a histologic and histomorphometric study in minipigs. Clin Oral Implants Res. 2014;25(12):1378-85. doi: 10.1111/clr.12277.

Melsen F, Steiniche T. Bone histomorphometry. Osteoporos Int. 1993;3 Suppl 1:98-9. doi: 10.1007/BF01621876.

Vrist MH, Østergaard AMH, Langaa SS, Mose FH, Fynbo CA, Theil J, et al. Bone Turnover, Mineralization, and Volume Estimated by 18F-Sodium Fluoride PET/CT and Biomarkers in Chronic Kidney Disease: Mineral and Bone Disorder Compared with Bone Biopsy. Am J Nephrol. 2022;53(6):490-502. doi: 10.1159/000524961.

Hernandez JD, Wesseling K, Pereira R, Gales B, Harrison R, Salusky IB. Technical approach to iliac crest biopsy. Clin J Am Soc Nephrol. 2008;3 Suppl 3(Suppl 3):S164-9. doi: 10.2215/CJN.00460107.

Vidal B, Pinto A, Galvão MJ, Santos AR, Rodrigues A, Cascão R, et al. Bone histomorphometry revisited. Acta Reumatol Port. 2012;37(4):294-300.

Compston JE, Crowe JP, Wells IP, Horton LW, Hirst D, Merrett AL, et al. Vitamin D prophylaxis and osteomalacia in chronic cholestatic liver disease. Dig Dis Sci. 1980;25(1):28-32. doi: 10.1007/BF01312729.

Eventov I, Frisch B, Cohen Z, Hammel I. Osteopenia, hematopoiesis, and bone remodelling in iliac crest and femoral biopsies: a prospective study of 102 cases of femoral neck fractures. Bone. 1991;12(1):1-6. doi: 10.1016/8756-3282(91)90047-m.

Frost HM. Mean formation time of human osteons. Can J Biochem Physiol. 1963;41:1307–10.

Agerbaek MO, Eriksen EF, Kragstrup J, Mosekilde L, Melsen F. A reconstruction of the remodelling cycle in normal human cortical iliac bone. Bone Miner. 1991;12(2):101-12. doi: 10.1016/0169-6009(91)90039-3.

Bell KL, Loveridge N, Reeve J, Thomas CD, Feik SA, Clement JG. Super-osteons (remodeling clusters) in the cortex of the femoral shaft: influence of age and gender. Anat Rec. 2001;264(4):378-86. doi: 10.1002/ar.10014.

Jordan GR, Loveridge N, Bell KL, Power J, Rushton N, Reeve J. Spatial clustering of remodeling osteons in the femoral neck cortex: a cause of weakness in hip fracture? Bone. 2000;26(3):305-13. doi: 10.1016/s8756-3282(99)00272-0.

Power J, Noble BS, Loveridge N, Bell KL, Rushton N, Reeve J. Osteocyte lacunar occupancy in the femoral neck cortex: an association with cortical remodeling in hip fracture cases and controls. Calcif Tissue Int. 2001;69(1):13-9. doi: 10.1007/s00223-001-0013-6.

Vedi S, Bell KL, Loveridge N, Garrahan N, Purdie DW, Compston JE. The effects of hormone replacement therapy on cortical bone in postmenopausal women. A histomorphometric study. Bone. 2003;33(3):330-4. doi: 10.1016/s8756-3282(03)00114-5.

Baddeley AJ, Gundersen HJ, Cruz-Orive LM. Estimation of surface area from vertical sections. J Microsc. 1986;142(Pt 3):259-76. doi: 10.1111/j.1365-2818.1986.tb04282.x.

Vesterby A, Kragstrup J, Gundersen HJ, Melsen F. Unbiased stereologic estimation of surface density in bone using vertical sections. Bone. 1987;8(1):13-7. doi: 10.1016/8756-3282(87)90126-8.

Compston JE, Croucher PI. Histomorphometric assessment of trabecular bone remodelling in osteoporosis. Bone Miner. 1991;14(2):91-102. doi: 10.1016/0169-6009(91)90086-f.

Frost HM. Tetracycline-based histological analysis of bone remodeling. Calcif Tissue Res. 1969;3(3):211-37. doi: 10.1007/BF02058664.

Parfitt AM, Foldes J, Villanueva AR, Shih MS. Difference in label length between demethylchlortetracycline and oxytetracycline: implications for the interpretation of bone histomorphometric data. Calcif Tissue Int. 1991;48(2):74-7. doi: 10.1007/BF02555869.

Lindsay R, Cosman F, Zhou H, Bostrom MP, Shen VW, Cruz JD, et al. A novel tetracycline labeling schedule for longitudinal evaluation of the short-term effects of anabolic therapy with a single iliac crest bone biopsy: early actions of teriparatide. J Bone Miner Res. 2006;21(3):366-73. doi: 10.1359/JBMR.051109.

Rubin MR, Dempster DW, Sliney J Jr, Zhou H, Nickolas TL, Stein EM, et al. PTH(1-84) administration reverses abnormal bone-remodeling dynamics and structure in hypoparathyroidism. J Bone Miner Res. 2011;26(11):2727-36. doi: 10.1002/jbmr.452.

Lindsay R, Zhou H, Cosman F, Nieves J, Dempster D. Double and quadruple tetracycline labeling of bone: impact of the label itself. J Bone Miner Res. 2013;28(1):222-3. doi: 10.1002/jbmr.1818.

Dempster DW, Zhou H, Recker RR, Brown JP, Recknor CP, Lewiecki EM, et al. Differential Effects of Teriparatide and Denosumab on Intact PTH and Bone Formation Indices: AVA Osteoporosis Study. J Clin Endocrinol Metab. 2016;101(4):1353-63. doi: 10.1210/jc.2015-4181.

Vedi S, Compston JE. Direct and indirect measurements of osteoid seam width in human iliac crest trabecular bone. Metab Bone Dis Relat Res. 1984;5(6):269-74. doi: 10.1016/0221-8747(84)90013-4.

Chavassieux PM, Arlot ME, Meunier PJ. Intermethod variation in bone histomorphometry: comparison between manual and computerized methods applied to iliac bone biopsies. Bone. 1985;6(4):221-9. doi: 10.1016/8756-3282(85)90004-3.

Compston J, Skingle L, Dempster DW. Bone histomorphometry in Vitamin D. New York, NY, USA:Academic; 2018. p. 959-73.

Vedi S, Tighe JR, Compston JE. Measurement of total resorption surface in iliac crest trabecular bone in man. Metab Bone Dis Relat Res. 1984;5(6):275-80. doi: 10.1016/0221-8747(84)90014-6.

Burstone MS. Histochemical demonstration of acid phosphatase activity in osteoclasts. J Histochem Cytochem. 1959;7(1):39-41. doi: 10.1177/7.1.39.

Evans RA, Dunstan CR, Baylink DJ. Histochemical identification of osteoclasts in undecalcified sections of human bone. Miner Electrolyte Metab. 1979;2:179–85.

Courpron P, Lepine P, Arlot M, Lips P, Meunier PJ. Mechanisms underlying the reduction with age of the mean wall thickness of the trabecular basic structure unit (BSU) in human iliac bone. In: Jee WSS, Parfitt AM, editors. Bone histomorphometry, 3rd international workshop. Paris: Armour Montagu; 1980. p. 323–9.

Croucher PI, Mellish RW, Vedi S, Garrahan NJ, Compston JE. The relationship between resorption depth and mean interstitial bone thickness: age-related changes in man. Calcif Tissue Int. 1989;45(1):15-9. doi: 10.1007/BF02556655.

Parfitt AM, Foldes J. The ambiguity of interstitial bone thickness: a new approach to the mechanism of trabecular thinning. Bone. 1991;12(2):119-22. doi: 10.1016/8756-3282(91)90010-g.

Eriksen EF, Melsen F, Mosekilde L. Reconstruction of the resorptive site in iliac trabecular bone: a kinetic model for bone resorption in 20 normal individuals. Metab Bone Dis Relat Res. 1984;5(5):235-42. doi: 10.1016/0221-8747(84)90065-1.

Palle S, Chappard D, Vico L, Riffat G, Alexandre C. Evaluation of the osteoclastic population in iliac crest biopsies from 36 normal subjects: a histoenzymologic and histomorphometric study. J Bone Miner Res. 1989;4(4):501-6. doi: 10.1002/jbmr.5650040408.

Garrahan NJ, Croucher PI, Compston JE. A computerised technique for the quantitative assessment of resorption cavities in trabecular bone. Bone. 1990;11(4):241-5. doi: 10.1016/8756-3282(90)90076-b.

Parfitt AM. Bone remodeling in type I osteoporosis. J Bone Miner Res. 1991;6(1):95-7. doi: 10.1002/jbmr.5650060115.

Compston JE. Connectivity of cancellous bone: assessment and mechanical implications. Bone. 1994;15(5):463-6. doi: 10.1016/8756-3282(94)90267-4.

Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res. 1989;4(1):3-11. doi: 10.1002/jbmr.5650040103.

Odgaard A, Gundersen HJ. Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone. 1993;14(2):173-82. doi: 10.1016/8756-3282(93)90245-6.

Melsen F, Melsen B, Mosekilde L. An evaluation of the quantitative parameters applied in bone histology. Acta Pathol Microbiol Scand A. 1978;86(1):63-9. doi: 10.1111/j.1699-0463.1978.tb02013.x.

Melsen F, Melsen B, Mosekilde L, Bergmann S. Histomorphometric analysis of normal bone from the iliac crest. Acta Pathol Microbiol Scand A. 1978;86(1):70-81. doi: 10.1111/j.1699-0463.1978.tb02014.x.

Garner A, Ball J. Quantitative observations on mineralised and unmineralised bone in chronic renal azotaemia and intestinal malabsorption syndrome. J Pathol Bacteriol. 1966;91(2):545-61. doi: 10.1002/path.1700910231.

Visser WJ, Niermans HJ, Roelofs JMM, Raymakers JA. Duursma SA. Comparative morphometry of bone biopsies obtained by two different methods from the right and left iliac crest. In: Meunier PJ, ed. Bone histomorphometry. 2nd International Workshop. Societe de la Nouvelle Imprimerie Fournie; Toulouse, France, 1976:79-87.

Woods CG, Morgan DB, Paterson CR, Gossmann HH. Measurement of osteoid in bone biopsy. J Pathol Bacteriol. 1968;95(2):441-7. doi: 10.1002/path.1700950214.

Ritz E, Krempien B, Mehls O, Malluche H. Skeletal abnormalities in chronic renal insufficiency before and during maintenance hemodialysis. Kidney Int. 1973;4(2):116-27. doi: 10.1038/ki.1973.90.

Visser WJ, Roelofs JM, Peters JP, Lentferink MH, Duursma SA. Sampling variation in bone histomorphometry. In Bone Histonorphometrv: Third International Workshop; 1980. p. 429-34.

Olah AJ. Influence of microscopic resolution on the estimation of structural parameters in cancellous bone. In: Meunier PJ, ed. Bone histomorphometry. 2nd International Workshop. Societe de la Nouvelle Imprimerie Fournie: Toulouse, France; 1976. p.55-61.

Delling G, Luehmann H, Baron R, Mathews CH, Olah A. Investigation of intra-and inter-reader reproducibility. Metab Bone Dis Rel Res. 1980;2:419-27.

Legrand E, Chappard D, Pascaretti C, Duquenne M, Krebs S, Rohmer V, et al. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res. 2000;15(1):13-9. doi: 10.1359/jbmr.2000.15.1.13.

de Vernejoul MC, Kuntz D, Miravet L, Goutallier D, Ryckewaert A. Bone histomorphometric reproducibility in normal patients. Calcif Tissue Int. 1981;33(4):369-74. doi: 10.1007/BF02409458.

Wright CD, Vedi S, Garrahan NJ, Stanton M, Duffy SW, Compston JE. Combined inter-observer and inter-method variation in bone histomorphometry. Bone. 1992;13(3):205-8. doi: 10.1016/8756-3282(92)90198-6.

Chappard D, Retailleau-Gaborit N, Legrand E, Baslé MF, Audran M. Comparison insight bone measurements by histomorphometry and microCT. J Bone Miner Res. 2005;20(7):1177-84. doi: 10.1359/JBMR.050205. Epub 2005 Feb 14.

El Khassawna T, Böcker W, Brodsky K, Weisweiler D, Govindarajan P, Kampschulte M, et al. Impaired extracellular matrix structure resulting from malnutrition in ovariectomized mature rats. Histochem Cell Biol. 2015;144(5):491-507. doi: 10.1007/s00418-015-1356-9.

Engelke K, Libanati C, Fuerst T, Zysset P, Genant HK. Advanced CT based in vivo methods for the assessment of bone density, structure, and strength. Curr Osteoporos Rep. 2013;11(3):246-55. doi: 10.1007/s11914-013-0147-2.

Cohen A, Dempster DW, Müller R, Guo XE, Nickolas TL, Liu XS, et al. Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: comparison with transiliac bone biopsy. Osteoporos Int. 2010;21(2):263-73. doi: 10.1007/s00198-009-0945-7.

Todisco M, Trisi P. Bone mineral density and bone histomorphometry are statistically related. Int J Oral Maxillofac Implants. 2005;20(6):898-904.

Gielkens PF, Schortinghuis J, de Jong JR, Huysmans MC, Leeuwen MB, Raghoebar GM, et al. A comparison of micro-CT, microradiography and histomorphometry in bone research. Arch Oral Biol. 2008;53(6):558-66. doi: 10.1016/j.archoralbio.2007.11.011.

Frost ML, Blake GM, Cook GJ, Marsden PK, Fogelman I. Differences in regional bone perfusion and turnover between lumbar spine and distal humerus: (18)F-fluoride PET study of treatment-naïve and treated postmenopausal women. Bone. 2009;45(5):942-8. doi: 10.1016/j.bone.2009.07.081.

Moore AE, Blake GM, Taylor KA, Rana AE, Wong M, Chen P, et al. Assessment of regional changes in skeletal metabolism following 3 and 18 months of teriparatide treatment. J Bone Miner Res. 2010;25(5):960-7. doi: 10.1359/jbmr.091108.

Frost ML, Blake GM, Park-Holohan SJ, Cook GJ, Curran KM, Marsden PK, et al. Long-term precision of 18F-fluoride PET skeletal kinetic studies in the assessment of bone metabolism. J Nucl Med. 2008;49(5):700-7. doi: 10.2967/jnumed.107.046987.

Mukhopadhyay S. Role of histology in the diagnosis of infectious causes of granulomatous lung disease. Curr Opin Pulm Med. 2011;17(3):189-96. doi: 10.1097/MCP.0b013e3283447bef.

Eriksen EF. Normal and pathological remodeling of human trabecular bone: three dimensional reconstruction of the remodeling sequence in normals and in metabolic bone disease. Endocr Rev. 1986;7(4):379-408. doi: 10.1210/edrv-7-4-379.



Article Tools
Email this article (Login required)
About The Authors

Ralitsa Yotsova
Department of Oral Surgery, Faculty of Dental Medicine, Medical University of Varna

Stefan Peev
Department of Periodontology and Dental Implantology, Faculty of Dental Medicine, Medical University of Varna

Nikoleta Ivanova
Department of Biology, Faculty of Pharmacy, Medical University of Varna

Font Size