INTRODUCTION:
The reconstruction of bone defects, caused by traumas, tumors, infections, and genetic disorders, is a major problem in orthopedic surgery, maxillofacial and oral surgery, plastic surgery, dental implantology, otorhinolaryngology, etc. Although autogenous bone grafts are still regarded as the gold standard in bone reconstructive surgery, alloplastic materials are more commonly applied due to their accessibility. Recently, the utilization of carbonate apatite as a bone substitute has been a matter of interest for researchers in the field, and its physical and biological properties are currently being tested and evaluated.
AIM:
The present review aims to evaluate the application of carbonate apatite as a bone substitute concerning its fabrication, physical properties, and biological behavior.
MATERIALS AND METHODS:
An electronic search using Google Scholar, PubMed, Scopus, and ScienceDirect was conducted up to November 2022. The article summarizes the current knowledge on the application of carbonate apatite as a bone substitute material, identifies the research gaps in the existing literature, and gives some recommendations for further assessments.
RESULTS:
We could assume that the mechanical and biological properties of carbonate apatite depend on the method of its fabrication and recommend further long-term research and evaluation to optimize the synthesis protocols and, thus, the qualities of the material.
CONCLUSION:
It has been suggested that carbonate material has the potential to replace autologous bone grafts in bone reconstruction. The material has excellent biocompatibility, resorbability, and osteoconductive capacity, and could be regarded as a promising bone substitute material.
Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 2014;25(10):2445-61. doi: 10.1007/s10856-014-5240-2.
Rahyussalim AJ, Supriadi S, Marsetio AF, Pribadi PM, Suharno B. The potential of carbonate apatite as an alternative bone substitute material. Med J Indones [Internet]. 2019;28(1):92-7.
https://doi.org/10.13181/mji.v28i1.2681
Suh H, Park JC, Han DW, Lee DH, Han CD. A bone replaceable artificial bone substitute: cytotoxicity, cell adhesion, proliferation, and alkaline phosphatase activity. Artif Organs. 2001;25(1):14-21. doi: 10.1046/j.1525-1594.2001.025001014.x.
Miteva M, Gerova T. Bone repair materials used in guided tissue regeneration - advantages and disadvantages. Int J Sci Res. 2019;8(10):1490-94. doi: 10.21275/ART20202214.
Gerova T, Miteva M. Barrier membranes used in guided tissue regeneration - advantages and disadvantages. Int J Sci Res. 2019;8(10):1472-75. doi: 10.21275/ART20202083 10.21275/ART20202214.
Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38 Suppl 4:S3-6. doi: 10.1016/s0020-1383(08)70003-2.
Yuasa T, Miyamoto Y, Ishikawa K, Takechi M, Momota Y, Tatehara S, et al. Effects of apatite cements on proliferation and differentiation of human osteoblasts in vitro. Biomaterials. 2004;25(7-8):1159-66. doi: 10.1016/j.biomaterials.2003.08.003.
Kasai T, Sato K, Kanematsu Y, Shikimori M, Kanematsu N, Doi Y. Bone tissue engineering using porous carbonate apatite and bone marrow cells. J Craniofac Surg. 2010;21(2):473-8. doi: 10.1097/SCS.0b013e3181cfea6d.
Hasegawa M, Doi Y, Uchida A. Cell-mediated bioresorption of sintered carbonate apatite in rabbits. J Bone Joint Surg Br. 2003;85(1):142-7. doi: 10.1302/0301-620x.85b1.13414.
Chazono M, Tanaka T, Kitasato S, Kikuchi T, Marumo K. Electron microscopic study on bone formation and bioresorption after implantation of beta-tricalcium phosphate in rabbit models. J Orthop Sci. 2008;13(6):550-5. doi: 10.1007/s00776-008-1271-1.
Horowitz RA, Mazor Z, Foitzik C, Prasad H, Rohrer M, Palti A. β-tricalcium phosphate as bone substitute material. J Osseointegration. 2010;1(2):61–8. doi: 10.23805/jo.2010.02.02.04.
Friesenbichler J, Maurer-Ertl W, Sadoghi P, Pirker-Fruehauf U, Bodo K, Leithner A. Adverse reactions of artificial bone graft substitutes: lessons learned from using tricalcium phosphate geneX®. Clin Orthop Relat Res. 2014;472(3):976-82. doi: 10.1007/s11999-013-3305-z.
Ogose A, Hotta T, Kawashima H, Kondo N, Gu W, Kamura T, et al. Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J Biomed Mater Res B Appl Biomater. 2005;72(1):94-101. doi: 10.1002/jbm.b.30136.
Ren, FZ, Leng, Y. Carbonated Apatite, Type-A or Type-B? Key Eng Mater. 2011;493:293–7. doi:10.4028/www.scientific.net/kem.493-494.293.
Nassif N, Martineau F, Syzgantseva O, Gobeaux F, Willinger M, Coradin T, et al. In vivo inspired conditions to synthesize biomimetic hydroxyapatite. Chem. Mater. 2010;22(12):3653–63. doi:10.1021/cm903596q.
Kim YS, Kwon HK, Kim BI. Effect of nano-carbonate apatite to prevent re-stain after dental bleaching in vitro. J Dent. 2011;39(9):636-42. doi: 10.1016/j.jdent.2011.07.002.
San Thian E, Ahmad Z, Huang J, Edirisinghe MJ, Jayasinghe SN, Ireland DC, et al. The role of electrosprayed apatite nanocrystals in guiding osteoblast behaviour. Biomaterials. 2008 Apr;29(12):1833-43. doi: 10.1016/j.biomaterials.2008.01.007.
Baig AA, Fox JL, Su J, Wang Z, Otsuka M, Higuchi WI, et al, Effect of carbonate content and crystallinity on the metastable equilibrium solubility behavior of carbonate apatite. J Colloid Interface Sci. 1996;179(2):608-17. doi: 10.1006/jcis.1996.0255.
Suchanek WL, Shuk P, Byrappa K, Riman RE, TenHuisen KS, Janas VF. Mechanochemical-hydrothermal synthesis of carbonated apatite powders at room temperature. Biomaterials. 2002;23(3):699-710. doi: 10.1016/s0142-9612(01)00158-2.
Redey SA, Nardin M, Bernache-Assolant D, Rey C, Delannoy P, Sedel L, et al. Behavior of human osteoblastic cells on stoichiometric hydroxyapatite and type A carbonate apatite: role of surface energy. J Biomed Mater Res. 2000;50(3):353-64. doi: 10.1002/(sici)1097-4636(20000605)50:3<353::aid-jbm9>3.0.co;2-c.
Barralet JE, Aldred S, Wright AJ, Coombes AG. In vitro behavior of albumin-loaded carbonate hydroxyapatite gel. J Biomed Mater Res. 2002;60(3):360-7. doi: 10.1002/jbm.10070.
Matsumoto T, Okazaki M, Inoue M, Ode S, Chang-Chien C, Nakao H, et al. Biodegradation of carbonate apatite/collagen composite membrane and its controlled release of carbonate apatite. J Biomed Mater Res. 2002;60(4):651-6. doi: 10.1002/jbm.10133.
Barralet JE, Best SM, Bonfield W. Effect of sintering parameters on the density and microstructure of carbonate hydroxyapatite. J Mater Sci Mater Med. 2000;11(11):719-24. doi: 10.1023/a:1008975812793.
McConnell D. The problem of the carbonate apatites; a carbonate oxy-apatite (dahllite). Am J Sci. 1938;s5-36(214):296-303.
McConnel D, Gruner JW. The problem of the carbonate apatites, III. Carbonate apatite from Magnet Cove, Arkansas. Am Mineral. 1940;25:157.
Ren F, Ding Y, Leng Y. Infrared spectroscopic characterization of carbonated apatite: a combined experimental and computational study. J Biomed Mater Res A. 2014;102(2):496-505. doi: 10.1002/jbm.a.34720.
Bonel G, Montel G. Sur une nouvelle apatite carbonatée synthétique. Comptes rendus de l'Académie des Sciences. 1964:923-6.
LeGeros RZ. Calcium phosphates in oral biology and medicine. Monogr Oral Sci. 1991;15:1-201.
Cacciotti, I. Cationic and anionic substitutions in hydroxyapatite. In: Antoniac E, editor. Handbook of bioceramics and biocomposites, Vol.1. 1st ed. Springer: Cham, Switzerland; 2016. pp. 145–211.
Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ. The carbonate environment in bone mineral: a resolution-enhanced Fourier Transform Infrared Spectroscopy Study. Calcif Tissue Int. 1989 Sep;45(3):157-64. doi: 10.1007/BF02556059.
Leventouri T, Antonakos A, Kyriacou A, Venturelli R, Liarokapis E, Perdikatsis V. Crystal structure studies of human dental apatite as a function of age. Int J Biomater. 2009;2009:698547. doi: 10.1155/2009/698547.
Spizzirri PG, Cochrane NJ, Prawer S, Reynolds EC. A comparative study of carbonate determination in human teeth using Raman spectroscopy. Caries Res. 2012;46(4):353-60. doi: 10.1159/000337398.
Grunenwald A, Keyser C, Sautereau AM, Crubézy E, Ludes B, Drouet C. Revisiting carbonate quantification in apatite (bio) minerals: A validated FTIR methodology. J Archaeol Sci. 2014;49: 134–41. doi: 10.1016/j.jas.2014.05.004.
Madupalli H, Pavan B, Tecklenburg MMJ. Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. J Solid State Chem. 2017;255:27-35. doi: 10.1016/j.jssc.2017.07.025.
Siddiqi SA, Azhar U. 6-Carbonate substituted hydroxyapatite. In: Khan AS, Chaudhry AA, editors. Handbook of Ionic Substituted Hydroxyapatites. Vol. 1. 1st ed. Woodhead Publishing: Cambridge, UK; 2020. pp. 149–73.
Eriwati YK, Yulfa RV, Wijatmo I, Irawan B. Different molarities and dissolution-precipitation duration affect the formation of carbonate-apatite blocks for bone graft material. Pesqui Bras Odontopediatria Clín Integr. 2020; 20:e5644. doi: 10.1590/pboci.2020.110.
Wakamura M, Kandori K., Ishikawa T. Surface structure and composition of calcium hydroxyapatites substituted with Al(III), La(III) and Fe(III) ions. Colloid Surf A Physicochem Eng Asp. 2000;164(2-3):297-305. doi:10.1016/S0927-7757(99)00384-2.
Yang WH, Xi XF, Li JF, Cai KY. Comparison of crystal structure between carbonated hydroxyapatite and natural bone apatite with theoretical calculation. Asian J Chem. 2013;25(7):3673-8. doi: 10.14233/ajchem.2013.13709.
Vallet-Regí M, González-Calbet JM. Calcium phosphates as substitution of bone tissues. Prog Solid State Chem. 2004;32(1-2):1–31. doi: 10.1016/j.progsolidstchem.2004.07.001.
Sikavitsas VI, Temenoff JS, Mikos AG. Biomaterials and bone mechanotransduction. Biomaterials. 2001;22(19):2581-93. doi: 10.1016/s0142-9612(01)00002-3.
LeGeros RZ, Tung MS. Chemical stability of carbonate- and fluoride-containing apatites. Caries Res. 1983;17(5):419-29. doi: 10.1159/000260696.
Doi Y, Shibutani T, Moriwaki Y, Kajimoto T, Iwayama Y. Sintered carbonate apatites as bioresorbable bone substitutes. J Biomed Mater Res. 1998;39(4):603-10. doi: 10.1002/(sici)1097-4636(19980315)39:4<603::aid-jbm15>3.0.co;2-7.
Klein CP, Driessen AA, de Groot K, van den Hooff A. Biodegradation behavior of various calcium phosphate materials in bone tissue. J Biomed Mater Res. 1983;17(5):769-84. doi: 10.1002/jbm.820170505.
Hasegawa M, Doi Y, Uchida A. Cell-mediated bioresorption of sintered carbonate apatite in rabbits. J Bone Joint Surg Br. 2003;85(1):142-7. doi: 10.1302/0301-620x.85b1.13414.
Takeshita N, Akagi T, Yamasaki M, Ozeki T, Nojima T, Hiramatsu Y, et al. Osteoclastic features of multinucleated giant cells responding to synthetic hydroxyapatite implanted in rat jaw bone. J Electron Microsc (Tokyo). 1992;41(3):141-6.
Doi Y, Koda T, Wakamatsu N, Goto T, Kamemizu H, Moriwaki Y, et al. Influence of carbonate on sintering of apatites. J Dent Res. 1993;72(9):1279-84. doi: 10.1177/00220345930720090401.
Nelson DG. The influence of carbonate on the atomic structure and reactivity of hydroxyapatite. J Dent Res. 1981;60 Spec No C:1621-9. doi: 10.1177/0022034581060003S1201.
Legeros RZ, Trautz OR, Legeros JP, Klein E, Shirra WP. Apatite crystallites: effects of carbonate on morphology. Science. 1967;155(3768):1409-11. doi: 10.1126/science.155.3768.
Rupani A, Hidalgo-Bastida LA, Rutten F, Dent A, Turner I, Cartmell S. Osteoblast activity on carbonated hydroxyapatite. J Biomed Mater Res A. 2012;100(4):1089-96. doi: 10.1002/jbm.a.34037.
Coreño AJ, Coreño AO, Cruz RJJ, Rodríguez CC. Mechanochemical synthesis of nanocrystalline carbonate-substituted hydroxyapatite. Opt Mater (Amst). 2005;27(7):1281–5. doi: 10.1016/j.optmat.2004.11.025.
Gibson IR, Bonfield W. Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J Biomed Mater Res. 2002;59(4):697-708. doi: 10.1002/jbm.10044.
Jokanović V, Izvonar D, Dramićanin MD, Jokanović B, Zivojinović V, Marković D, et al. Hydrothermal synthesis and nanostructure of carbonated calcium hydroxyapatite. J Mater Sci Mater Med. 2006;17(6):539-46. doi: 10.1007/s10856-006-8937-z.
Kovaleva ES, Shabanov MP, Putlayev VI, Filippov YY, Tretyakov YD, Ivanov VK. Carbonated hydroxyapatite nanopowders for preparation of bioresorbable materials. Materwiss Werksttech. 2008;39(11):822–9. doi: 10.1002/mawe.200800383.
Lafon JP, Champion E, Bernache-Assollant D. Processing of AB-type carbonated hydroxyapatite Ca10-x(PO4)6-x(CO3)x (OH)2-x-2y(CO3)y ceramics with controlled composition. J Eur Ceram Soc. 2008;28(1):139–47. doi: 10.1016/j.jeurceramsoc.2007.06.009.
Landi E, Tampieri A, Celotti G, Vichi L, Sandri M. Influence of synthesis and sintering parameters on the characteristics of carbonate apatite. Biomaterials. 2004;25(10):1763-70. doi: 10.1016/j.biomaterials.2003.08.026.
Merry JC, Gibson IR, Best SM, Bonfield W. Synthesis and characterization of carbonate hydroxyapatite. J Mater Sci Mater Med. 1998;9(12):779-83. doi: 10.1023/a:1008975507498.
Doi Y. Sintered carbonate apatites as bone substitutes. Cells Mater. 1997;7(2):111-22. Doi: 1051-6794197$5.00+.25.
Ishikawa K, Matsuya S, Lin X, Lei Z, Yuasa T, Miyamoto Y. Fabrication of low crystalline B-type carbonate apatite block from low crystalline calcite block. J Ceram Soc Jpn. 2010;118(1377):341-4. doi:10.2109/jcersj2.118.341.
Habibovic P, Juhl MV, Clyens S, Martinetti R, Dolcini L, Theilgaard N, van Blitterswijk CA. Comparison of two carbonated apatite ceramics in vivo. Acta Biomater. 2010;6(6):2219-26. doi: 10.1016/j.actbio.2009.11.028.
Pham Minh D, Tran ND, Nzihou A, Sharrock P. Novel one-step synthesis and characterization of bone-like carbonated apatite from calcium carbonate, calcium hydroxide and orthophosphoric acid as economical starting materials. Mater Res Bull. 2014;51:236-43. doi: 10.1016/j.materresbull.2013.12.020
Rucci N. Molecular biology of bone remodelling. Clin Cases Miner Bone Metab. 2008;5(1):49-56.
Matsuura A, Kubo T, Doi K, Hayashi K, Morita K, Yokota R, et al. Bone formation ability of carbonate apatite-collagen scaffolds with different carbonate contents. Dent Mater J. 2009;28(2):234-42. doi: 10.4012/dmj.28.234.
Mano T, Akita K, Fukuda N, Kamada K, Kurio N, Ishikawa K, et al. Histological comparison of three apatitic bone substitutes with different carbonate contents in alveolar bone defects in a beagle mandible with simultaneous implant installation. J Biomed Mater Res B Appl Biomater. 2020;108(4):1450-9. doi: 10.1002/jbm.b.34492.
Germaini MM, Detsch R, Grünewald A, Magnaudeix A, Lalloue F, Boccaccini AR, et al. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration. Biomed Mater. 2017;12(3):035008. doi: 10.1088/1748-605X/aa69c3.
Lee MN, Hwang HS, Oh SH, Roshanzadeh A, Kim JW, Song JH, Kim ES, Koh JT. Elevated extracellular calcium ions promote proliferation and migration of mesenchymal stem cells via increasing osteopontin expression. Exp Mol Med. 2018;50(11):1-16. doi: 10.1038/s12276-018-0170-6.
Elsheikh M, Kishida R, Hayashi K, Tsuchiya A, Shimabukuro M, Ishikawa K. Effects of pore interconnectivity on bone regeneration in carbonate apatite blocks. Regen Biomater. 2022;9(1):rbac010. doi: 10.1093/rb/rbac010.
Akita K, Fukuda N, Kamada K, Kudoh K, Kurio N, Tsuru K, et al. Fabrication of porous carbonate apatite granules using microfiber and its histological evaluations in rabbit calvarial bone defects. J Biomed Mater Res A. 2020;108(3):709-21. doi: 10.1002/jbm.a.36850.
Kanazawa M, Tsuru K, Fukuda N, Sakemi Y, Nakashima Y, Ishikawa K. Evaluation of carbonate apatite blocks fabricated from dicalcium phosphate dihydrate blocks for reconstruction of rabbit femoral and tibial defects. J Mater Sci Mater Med. 2017;28(6):85. doi: 10.1007/s10856-017-5896-5.
Ishikawa, K. Bone substitute fabrication based on dissolution-precipitation reaction. Materials. 2010;3(2):1138-55. doi: 10.3390/ma3021138.
Tsuru K, Yoshimoto A, Kanazawa M, Sugiura Y, Nakashima Y, Ishikawa K. Fabrication of carbonate apatite block through a dissolution-precipitation reaction using calcium hydrogen phosphate dihydrate block as a precursor. Materials (Basel). 2017;10(4):374. doi: 10.3390/ma10040374.
Lee, Y, Hahm, YM, Matsuya S, Nakagawa M, Ishikawa K. Characterization of macroporous carbonate-substituted hydroxyapatite bodies prepared in different phosphate solutions. J Mater Sci. 2007;42:7843-9.
Zaman CT, Takeuchi A, Matsuya S, Zaman QH, Ishikawa K. Fabrication of B-type carbonate apatite blocks by the phosphorization of free-molding gypsum-calcite composite. Dent Mater J. 2008;27(5):710-5. doi: 10.4012/dmj.27.710.
Daitou F, Maruta M, Kawachi G, Tsuru K, Matsuya S, Terada Y, et al. Fabrication of carbonate apatite block based on internal dissolution-precipitation reaction of dicalcium phosphate and calcium carbonate. Dent Mater J. 2010;29(3):303-8. doi: 10.4012/dmj.2009-095.
Maruta M, Matsuya S, Nakamura S, Ishikawa K. Fabrication of low-crystalline carbonate apatite foam bone replacement based on phase transformation of calcite foam. Dent Mater J. 2011;30(1):14-20. doi: 10.4012/dmj.2010-087.
Sunouchi K, Tsuru K, Maruta M, Kawachi G, Matsuya S, Terada Y, et al. Fabrication of solid and hollow carbonate apatite microspheres as bone substitutes using calcite microspheres as a precursor. Dent Mater J. 2012;31(4):549-57. doi: 10.4012/dmj.2011-253.
Wakae H, Takeuchi A, Udoh K, Matsuya S, Munar ML, LeGeros RZ, et al. Fabrication of macroporous carbonate apatite foam by hydrothermal conversion of alpha-tricalcium phosphate in carbonate solutions. J Biomed Mater Res A. 2008;87(4):957-63. doi: 10.1002/jbm.a.31620.
Takeuchi A, Munar ML, Wakae H, Maruta M, Matsuya S, Tsuru K, Ishikawa K. Effect of temperature on crystallinity of carbonate apatite foam prepared from alpha-tricalcium phosphate by hydrothermal treatment. Biomed Mater Eng. 2009;19(2-3):205-11. doi: 10.3233/BME-2009-0581.
Karashima S, Takeuchi A, Matsuya S, Udoh K, Koyano K, Ishikawa K. Fabrication of low-crystallinity hydroxyapatite foam based on the setting reaction of alpha-tricalcium phosphate foam. J Biomed Mater Res A. 2009;88(3):628-33. doi: 10.1002/jbm.a.31904.
Sugiura Y, Tsuru, K, Ishikawa, K. Fabrication of carbonate apatite foam based on the setting reaction of α-tricalcium phosphate foam granules. Ceram Int. 2016;42(1):204-10. doi: 10.1016/j.ceramint.2015.08.081
Shimabukuro M, Hayashi K, Kishida R, Tsuchiya A, Ishikawa K. Effects of carbonate ions in phosphate solution on the fabrication of carbonate apatite through a dissolution–precipitation reaction. Ceramics Int. 2022;48(1):1032-7. doi: 10.1016/j.ceramint.2021.09.188.
Ana ID, Matsuya S, Ishikawa K. Engineering of carbonate apatite bone substitute based on composition-transformation of gypsum and calcium hydroxide. Eng. 2010;02(05):344-52. Doi:10.4236/eng.2010.25045
Fujisawa K, Akita K, Fukuda N, Kamada K, Kudoh T, Ohe G, et al. Compositional and histological comparison of carbonate apatite fabricated by dissolution-precipitation reaction and Bio-Oss®. J Mater Sci Mater Med. 2018;29(8):121. doi: 10.1007/s10856-018-6129-2
Linhart W, Peters F, Lehmann W, Schwarz K, Schilling AF, Amling M, et al. Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. J Biomed Mater Res. 2001;54(2):162-71. doi: 10.1002/1097-4636(200102)54:2<162::aid-jbm2>3.0.co;2-3.
Suh H, Park JC, Han DW, Lee DH, Han CD. A bone replaceable artificial bone substitute: cytotoxicity, cell adhesion, proliferation, and alkaline phosphatase activity. Artif Organs. 2001;25(1):14-21. doi: 10.1046/j.1525-1594.2001.025001014.x.
Dewi AH, Triawan A. The newly bone formation with carbonate apatite-chitosan bone substitute in the rat tibia. Indones J Dent Res. 2015;1(3):154-60. doi: 10.22146/theindjdentres.10065.
Ishikawa K. Bone substitute fabrication based on dissolutionprecipitation reactions. Materials (Basel). 2010;3(2):1138–55. doi: 10.3390/ma3021138.
Nagai H, Kobayashi-Fujioka M, Fujisawa K, Ohe G, Takamaru N, Hara K, et al. Effects of low crystalline carbonate apatite on proliferation and osteoblastic differentiation of human bone marrow cells. J Mater Sci Mater Med. 2015;26(2):99. doi: 10.1007/s10856-015-5431-5.
Sato N, Handa K, Venkataiah VS, Hasegawa T, Njuguna MM, Yahata Y, et al. Comparison of the vertical bone defect healing abilities of carbonate apatite, β-tricalcium phosphate, hydroxyapatite and bovine-derived heterogeneous bone. Dent Mater J. 2020;39(2):309-18. doi: 10.4012/dmj.2019-084.
Kudoh K, Fukuda N, Kasugai S, Tachikawa N, Koyano K, Matsushita Y, et al. Maxillary sinus floor augmentation using low-crystalline carbonate apatite granules with simultaneous implant installation: first-in-human clinical trial. J Oral Maxillofac Surg. 2019;77(5):985.e1-985.e11. doi: 10.1016/j.joms.2018.11.026.
Nakagawa T, Kudoh K, Fukuda N, Kasugai S, Tachikawa N, Koyano K, et al. Application of low-crystalline carbonate apatite granules in 2-stage sinus floor augmentation: a prospective clinical trial and histomorphometric evaluation. J Periodontal Implant Sci. 2019;49(6):382-96. doi: 10.5051/jpis.2019.49.6.382.
Gerova T, Miteva M. Application of two-dimensional radiography and CBCT in periodontology. Int J Sci Res. 2019;8(11):61-5. doi: 10.21275/ART20202425.
Gerova T, Miteva M. The role of CBCT-imaging technique in periodontology. International J Sci Res. 2019;8(11):51-4. doi: 10.21275/ART20202402.