Scientific Online Resource System

Scripta Scientifica Medicinae Dentalis

Methods for obtaining synthetic carbonate apatite for bone regeneration: A review

Ivaylo Parushev, Tsvetalina Gerova-Vatsova

Abstract

This review examines the most common methods for the preparation of synthetic carbonate apatite for bone repair in the last ten years. The article is organized into two sections. First, the methods for obtaining powdered carbonate apatite with nanosized particles by wet chemical precipitation reactions are presented, considering the starting reagents and the conditions of the chemical reactions. The second section presents the preparation of carbonate apatite blocks and/or granules by dissolution-precipitation reactions. The transformations occurring in these interactions are systematized according to the type of precursor, soaking solution, and reaction conditions.


Keywords

carbonate apatite; carbonated hydroxyapatite; carbonate hydroxyapatite; bone; regeneration

Full Text


References

Pandit A, Indurkar A, Locs J, Haugen HJ, Loca D. Calcium Phosphates: A Key to Next‐Generation In Vitro Bone Modeling. Adv. Healthcare Mater. 2024; 2401307. doi: 10.1002/adhm.202401307.

Hou X, Zhang L, Zhou Z, Luo X, Wang T, Zhao X, et al. Calcium phosphate-based biomaterials for bone repair. J Funct Biomater. 2022;13(4):187. doi: 10.3390/jfb13040187.

Dorozhkin S. Calcium orthophosphate (CaPO4)-based bioceramics: Preparation, properties, and applications. Coatings. 2022;12(10):1380. doi: 10.3390/coatings12101380.

Chen X, Li H, Ma Y, Jiang Y. Calcium phosphate-based nanomaterials: preparation, multifunction, and application for bone tissue engineering. Molecules. 2023;28(12):4790. doi: 10.3390/molecules28124790.

Radulescu D, Vasile O, Andronescu E, Ficai A. Latest research of doped hydroxyapatite for bone tissue engineering. Int J Mol Sci. 2023;24(17):13157. doi: 10.3390/ijms241713157.

Kareem R, Bulut N, Kaygili O. Hydroxyapatite biomaterials: A comprehensive review of their properties, structures, medical applications, and fabrication methods. J Chem Rev. 2024;6(1):1-26. doi: 10.48309/jcr.2024.415051.1253.

Kharissova O, Nikolaev A, Kharisov B, Dorozhkin S, López I, Méndez Y, et al. Enzymatic synthesis of calcium phosphates: A review. Nano-Struct Nano-Objects. 2024;39:101214. doi: 10.1016/j.nanoso.2024.101214.

Tolmacheva N, Bhattacharyya A, Noh I. Calcium phosphate biomaterials for 3D bioprinting in bone tissue engineering. Biomimetics (Basel). 2024;9(2):95. doi: 10.3390/biomimetics9020095.

Min K, Kim D, Kim K, Seo J, Pack S. Biomimetic Scaffolds of Calcium-Based Materials for Bone Regeneration. Biomimetics (Basel). 2024;9(9):511. doi: 10.3390/biomimetics9090511.

Rahyussalim A, Supriadi S, Marsetio A, Pribadi P, Suharno B. The potential of carbonate apatite as an alternative bone substitute material. Med J Indones. 2019;28:92–97. doi: 10.13181/mji.v28i1.2681.

Ishikawa K. Carbonate apatite bone replacement: learn from the bone. J Ceram Soc Jpn 2019;127(9):595-601. doi: 10.2109/jcersj2.19042.

Ressler A, Žužić A, Ivanišević I, Kamboj N, Ivanković H. Ionic substituted hydroxyapatite for bone regeneration applications: A review. Open Ceram. 2021; 6:100122. doi: 10.1016/j.oceram.2021.100122.

Kono T, Sakae T, Nakada H, Kaneda T, Okada H. Confusion between carbonate apatite and biological apatite (carbonated hydroxyapatite) in bone and teeth. Minerals. 2022;12(2):170. doi: 10.3390/min12020170.

Yotsova R, Peev S. Carbonate apatite as a bone substitute material. A review. Scr Sci Med Dentalis. 2023; 9(1):33-42. doi: 10.14748/ssmd.v9i1.8776.

Adekanmi D, Garcia C, Lopez-Badillo C, Carbonate Hydroxyapatite - A Multifunctional Bioceramics with Non-Medical Applications. Eng Chem. 2024;7:1-24. doi: 10.4028/p-518pjS.

Aoki K, Ideta H, Komatsu Y, Tanaka A, Kito M, Okamoto M, et al. Bone-Regeneration Therapy Using Biodegradable Scaffolds: Calcium Phosphate Bioceramics and Biodegradable Polymers. Bioeng. 2024;11:180. doi: 10.3390/bioengineering11020180.

Nunn M, Rudick C, Nikaido M, Miyamoto T. A systematic review of a novel alloplast carbonate apatite granules. Front Dent Med 2024;5:1418039. doi: 10.3389/fdmed.2024.1418039.

Yotsova R, Peev S. Biological Properties and Medical Applications of Carbonate Apatite: A Systematic Review. Pharmaceutics. 2024;16(2):291. doi: 10.3390/pharmaceutics16020291.

Nowicki D, Skakle J, Gibson I. Faster synthesis of A-type carbonated hydroxyapatite powders prepared by high-temperature reaction. Adv Powder Technol. 2020;31(8):3318-27. doi: 10.1016/j.apt.2020.06.022.

Siddiqi S, Azhar U. Chapter 6. Carbonate substituted hydroxyapatite. In: Khan AS, Chaudhary AA, editors. Handbook of Ionic Substituted Hydroxyapatites. Elsevier; 2020. pp. 149-73.

Pasteris J. A mineralogical view of apatitic biomaterials. Am Min. 2016;101:2594–610. doi: 10.2138/am-2016-5732.

Yotsova R, Peev S, Kolarov R. Immediate implant placement using customized healing abutments as a method of hard and soft tissue preservation. A review article. Scr Sci Med Dent. 2022;8(2):7-13. doi: 10.14748/ssmd.v8i2.8518.

Yankov G. Socket Preservation and Guided Bone Regeneration: Prerequisites for Successful Implant Dentistry. Cureus. 2023;15(11):e48785.doi: 10.7759/cureus.48785.

Yotsova R, Peev S, Kolarov R. Application of platelet-rich plasma for alveolar ridge preservation. A review article. Scr Sci Med Dent. 2022;8(1):18-37. doi: 10.14748/ssmd.v8i1.8493.

Yotsova R, Peev S, Georgiev T. Alveolar ridge preservation using free gingival grafts. A review article. Scr Sci Med Dent. 2021;7(2):24-30. doi: 10.14748/ssmd.v7i2.8178.

Yotsova R, Peev S, Georgiev T. Alveolar ridge preservation using dense polytetrafluoroethylene membranes. A review article. Scr Sci Med Dent. 2021;7(2):31-8. doi: 10.14748/ssmd.v7i2.8216.

Yotsova R, Peev S, Ivanova N. Bone histomorphometry as a diagnostic tool. A review article. Scr Sci Med Dent. 2023; 9(1):7-23. doi: 10.14748/ssmd.v9i1.8602.

Papanchev G, Yotsova R. Odontogenic maxillary sinusitis. Etiological, clinical, diagnostic and therapeutic aspects. Systematic review. J Union Sci Varna. Med Ecol Series. 2017;22(2):71-6. doi: 10.14748/isuvsme.v22i2.5529.

Šupová M. Substituted hydroxyapatites for biomedical applications: A review. Ceram Int. 2015; 41(8):9203-31. doi: 10.1016/j.ceramint.2015.03.316.

Fleet M. Carbonated Hydroxyapatite: Materials, Synthesis, and Applications. Pan Stanford Publishing Pte. Ltd; 2015.

Ishikawa K. Carbonate Apatite Bone Replacement. In: Antoniac IV, editor. Handbook of Bioceramics and Biocomposites. Springer International Publishing Switzerland; 2016. pp. 2013-232. doi: 10.1007/978-3-319-12460-5_8.

Calasans-Maia M, Barboza Junior C, Soriano-Souza C, Alves A, Uzeda M, Martinez-Zelaya V, et al. Microspheres of alginate encapsulated minocycline-loaded nanocrystalline carbonated hydroxyapatite: therapeutic potential and effects on bone regeneration. Int J Nanomedicine. 2019;14:4559-71. doi: 10.2147/IJN.S201631.

Schneider Werner Vianna T, Sartoretto SC, Neves Novellino Alves AT, Figueiredo de Brito Resende R, de Almeida Barros Mourão CF, de Albuquerque Calasans-Maia J, et al. Nanostructured Carbonated Hydroxyapatite Associated to rhBMP-2 Improves Bone Repair in Rat Calvaria. J Funct Biomater. 2020;11(4):87. doi: 10.3390/jfb11040087.

Schardosim M, Soulié J, Poquillon D, Cazalbou S, Duployer B, Tenailleau C, Rey C, Hübler R, Combes C. Freeze-casting for PLGA/carbonated apatite composite scaffolds: Structure and properties. Mater Sci Eng. 2017;77:731-8. doi: 10.1016/j.msec.2017.03.302.

Stanislavov A, Sukhodub L, Sukhodub L, Kuznetsov V, Bychkov K, Kravchenko M. Structural features of hydroxyapatite and carbonated apatite formed under the influence of ultrasound and microwave radiation and their effect on the bioactivity of the nanomaterials. Ultrason Sonochem. 2018;42:84-96. doi: 10.1016/j.ultsonch.2017.11.011.

Deymier A, Nair A, Depalle B, Qin Z, Arcot K, Drouet C, et al. Protein-free formation of bone-like apatite: New insights into the key role of carbonation. Biomaterials. 2017;127:75-88. doi: 10.1016/j.biomaterials.2017.02.029.

Wang S, Zhang J, Ma J, Yang H, Shao X, Su M, et al. Applying Pb2+ to probe the dissolution of carbonated hydroxylapatite by enterobacter sp.: a new insight into the bioerosion of tooth mineral. J Biomed Mater Res B Appl Biomater. 2021;109(8):1230-8. doi: 10.1002/jbm.b.34784.

Wang S, Shao C, Zhao X, Guo Y, Song H, Shen L, et al. Application of three-dimension printing nano-carbonated-hydroxylapatite to the repair of defects in rabbit bone. Int J Nanomedicine. 2024;19:1667-81. doi: 10.2147/IJN.S439775.

Li S, Yu W, Zhang W, Zhang G, Yu L, Lu E. Evaluation of highly carbonated hydroxyapatite bioceramic implant coatings with hierarchical micro-/nanorod topography optimized for osseointegration. Intl J Nanomedicine 2018;13:3643-59. doi: 10.2147/IJN.S159989.

Copete H, López E, Baudin C. Synthesis and characterization of B-type carbonated hydroxyapatite materials: Effect of carbonate content on mechanical strength and in vitro degradation. Bol Soc Esp Cerám Vidr. 2024;63(4):255-67. doi: 10.1016/j.bsecv.2023.12.001.

Safarzadeh M, Ramesh S, Tan C, Chandran H, Noor A, Krishnasamy S, et al. Effect of multi-ions doping on the properties of carbonated hydroxyapatite bioceramic. Ceram Int. 2019;45(3):3473-7. doi: 10.1016/j.ceramint.2018.11.003.

Safarzadeh M, Ramesh S, Tan C, Chandran H, Ching Y, Noor A, et al. Sintering behaviour of carbonated hydroxyapatite prepared at different carbonate and phosphate ratios. Bol Soc Esp Cerám Vidr. 2020;59(2):73-80. doi: 10.1016/j.bsecv.2019.08.001.

Ezekiel I, Kasim S, Ismail Y, Noor A. Nanoemulsion synthesis of carbonated hydroxyapatite nanopowders: Effect of variant CO32−/PO43− molar ratios on phase, morphology, and bioactivity. Ceram Int. 2018;44(11):13082-9. doi: 10.1016/j.ceramint.2018.04.128.

Nakamura M, Hiratai R, Hentunen T, Salonen J, Yamashita K. Hydroxyapatite with high carbonate substitutions promotes osteoclast resorption through osteocyte-like cells. ACS Biomaterials Sci Eng. 2016;2(2):259-67. doi: 10.1021/acsbiomaterials.5b00509.

Bergara-Muguruza L, Mäkelä K, Yrjälä T, Salonen J, Yamashita K, Nakamura M. Surface electric fields increase human osteoclast resorption through improved wettability on carbonate-incorporated apatite. ACS Appl Mater Interfaces. 2021;13(49):58270-8. doi: 10.1021/acsami.1c14358.

Anwar A, Asghar M, Kanwal Q, Kazmi M, Sadiqa A. Low temperature synthesis and characterization of carbonated hydroxyapatite nanocrystals. J Mol Struct. 2016;1117:283-6. doi: 10.1016/j.molstruc.2016.03.061.

Verma A, Kumar T, Madhumathi K, Rubaiya Y, Ramalingan M, Doble M. Curcumin releasing eggshell derived carbonated apatite nanocarriers for combined anti-cancer, anti-inflammatory and bone regenerative therapy. J Nanosci Nanotechnol. 2019;19(11):6872-80. doi: 10.1166/jnn.2019.16640.

Aneem T, Saha S, Jahan R, Wong S, Li X, Arafat M. Effects of organic modifiers and temperature on the synthesis of biomimetic carbonated hydroxyapatite. Ceram Int. 2019;45(18):24717-26. doi: 10.1016/j.ceramint.2019.08.211.

Januariyasa I, Yusuf Y. Synthesis of carbonated hydroxyapatite derived from snail shells (Pilla ampulacea): effect of carbonate precursor to the crystallographic properties. IOP Conf Ser Mater Sci Eng. 2019;546(4):042015. doi: 10.1088/1757-899X/546/4/042015.

Januariyasa I, Yusuf Y. Porous carbonated hydroxyapatite-based scaffold using simple gas foaming method. J Asian Ceram Soc. 2020;8(3):634-41. doi: 10.1080/21870764.2020.1770938.

Anggraini R, Yusuf Y. The effect of stirring time on the characteristics of carbonated hydroxyapatite from pearl shells (Pinctada maxima). IOP Conf Ser Mater Sci Eng. 2019;546(4):042002. doi: 10.1080/21870764.2020.1770938.

Permatasari H, Yusuf Y. Characteristics of carbonated hydroxyapatite based on abalone mussel shells (Halioitis asinina) synthesized by precipitation method with aging time variations. IOP Conf Ser Mater Sci Eng. 2019;546(4):042031. doi: 10.1088/1757-899X/546/4/042031.

Permatasari H, Supii A, Suparta G, Yusuf Y. Characteristics of abalone mussel shells (Halioitis asinina) with calcination temperature variations as a basic material for synthesis of carbonated hydroxyapatite. Key Eng Mater. 2019;818:31-6. doi:10.4028/www.scientific.net/KEM.818.31.

Permatasari H, Sari M, Aminatun, Suciati T, Dahlan K, Yusuf Y. Nano-carbonated hydroxyapatite precipitation from abalone shell (Haliotis asinina) waste as the bioceramics candidate for bone tissue engineering. Nanomater Nanotechnol. 2021;11:18479804211032851. doi: 10.1177/18479804211032851.

Sari M, Hening P, Ana I, Yusuf Y. Porous structure of bioceramics carbonated hydroxyapatite-based honeycomb scaffold for bone tissue engineering. Mater Today Commun. 2021;26:102135. doi: 10.1016/j.mtcomm.2021.102135.

Almukarrama, Yusuf Y. (, June). Development carbonated hydroxyapatite powders from oyster shells (Crassostrea gigas) by sintering time controlling. IOP Conf Ser Mater Sci Eng. 2019;546(4):042001. doi: 10.1088/1757-899X/546/4/042001.

Wati R, Yusuf Y. Effect of sintering temperature on carbonated hydroxyapatite derived from common cockle shells (Cerastodermaedule): Composition and crystal characteristics. Key Eng Mater. 2019;818:37-43. doi: 10.4028/www.scientific.net/KEM.818.37.

Ishikawa K, Hayashi K. Carbonate apatite artificial bone. Sci Technol Adv Mater. 2021;22(1):683-94. doi: 10.1080/14686996.2021.1947120.

Hayashi K, Ishikawa K. Effects of nanopores on the mechanical strength, osteoclastogenesis, and osteogenesis in honeycomb scaffolds. J Mater ChemB. 2020;8(37):8536-45. doi: 10.1039/D0TB01498B.

Hayashi K, Ishikawa K. Honeycomb scaffolds fabricated using extrusion molding and the sphere-packing theory for bone regeneration. ACS Appl Bio Mater. 2020;4(1):721-30. doi: 10.1021/acsabm.0c01279.

Hayashi K, Tsuchiya A, Shimabukuro M, Ishikawa K. Multiscale porous scaffolds constructed of carbonate apatite honeycomb granules for bone regeneration. Mater Design. 2022;215:110468. doi: 10.1016/j.matdes.2022.110468.

Hayashi K, Yanagisawa T, Shimabukuro M, Kishida R, Ishikawa K. Granular honeycomb scaffolds composed of carbonate apatite for simultaneous intra-and inter-granular osteogenesis and angiogenesis. Mater Today Bio. 2022;14:100247. doi: 10.1016/j.mtbio.2022.100247.

Hayashi K, Yanagisawa T, Kishida R, Tsuchiya A, Ishikawa K. Gear-shaped carbonate apatite granules with a hexagonal macropore for rapid bone regeneration. Comput Struct Biotechnol J. 2023;21:2514-23. doi: 10.1016/j.csbj.2023.03.053.

Shimabukuro M, Hayashi K, Kishida R, Tsuchiya A, Ishikawa K. Surface functionalization with copper endows carbonate apatite honeycomb scaffold with antibacterial, proangiogenic, and pro-osteogenic activities. Biomater Adv. 2022;135:212751. doi: 10.1016/j.bioadv.2022.212751.

Shimabukuro M, Hayashi K, Kishida R, Tsuchiya A, Ishikawa K. Effects of carbonate ions in phosphate solution on the fabrication of carbonate apatite through a dissolution–precipitation reaction. Ceram Int. 2022;48(1):1032-7. doi: 10.1016/j.ceramint.2021.09.188.

Putri T, Hayashi K, Ishikawa K. Fabrication of three-dimensional interconnected porous blocks composed of robust carbonate apatite frameworks. Ceram Int. 2020;46(12):20045-9. doi: 10.1016/j.ceramint.2021.03.324.

Shimabukuro M, Hayashi K, Kishida R, Tsuchiya A, Ishikawa K. No-observed-effect level of silver phosphate in carbonate apatite artificial bone on initial bone regeneration. ACS Infect Dis. 2021;8(1):159-69. doi: 10.1021/acsinfecdis.1c00480.

Wang Z, Shimabukuro M, Kishida R, Yokoi T, Kawashita M. Effects of pH on the microarchitecture of carbonate apatite granules fabricated through a dissolution–precipitation reaction. Front Bioeng Biotechnol. 2024;12:1396275. doi: 10.3389/fbioe.2024.1396275.

Tanaka K, Tsuchiya A, Ogino Y, Koyano K, Ishikawa K. Fabrication and histological evaluation of a fully interconnected porous CO3Ap block formed by hydrate expansion of CaO granules. ACS Appl Bio Mater. 2020; 3(12):8872-8. doi: 10.1021/acsabm.0c01176.

Hayashi K, Munar M, Ishikawa K. Effects of macropore size in carbonate apatite honeycomb scaffolds on bone regeneration. Mater Sci Eng C. 2020;111:110848. doi: 10.1016/j.msec.2020.110848.

Mano T, Akita K, Fukuda N, Kamada K, Kurio N, Ishikawa K, et al. Histological comparison of three apatitic bone substitutes with different carbonate contents in alveolar bone defects in a beagle mandible with simultaneous implant installation. J Biomed Mater Res Part B: Appl Biomater. 2020;108(4):1450-9. doi: 10.1002/jbm.b.34492.

Yanagisawa T, Hayashi K, Tsuchiya A, Kishida R, Ishikawa K. In vivo trial of bioresorbable mesh cages contained bone graft granules in rabbit femoral bone defects. Sci Rep. 2024;14(1):12449. doi: 10.1038/s41598-024-63067-y.

Fujioka‐Kobayashi M, Tsuru K, Nagai H, Fujisawa K, Kudoh T, Ohe G, et al. Fabrication and evaluation of carbonate apatite‐coated calcium carbonate bone substitutes for bone tissue engineering. J Tissue Eng Regen Med. 2018;12(10):2077-87. doi: 10.1002/term.2742.

Kishida R, Elsheikh M, Hayashi K, Tsuchiya A, Ishikawa K. Fabrication of highly interconnected porous carbonate apatite blocks based on the setting reaction of calcium sulfate hemihydrate granules. Ceram Int. 2021;47(14):19856-63. doi: 10.1016/j.ceramint.2021.03.324.

Elsheikh M, Kishida R, Hayashi K, Tsuchiya A, Shimabukuro M, Ishikawa K. Effects of pore interconnectivity on bone regeneration in carbonate apatite blocks. Regen Biomater. 2022;9:rbac010. doi: 10.1093/rb/rbac010.

Arsista D, Eriwati Y, Triaminingsih S, Sunarso S. Fabrication of porous carbonate apatite based on the dissolution-precipitation of calcium sulfate hemihydrate. Dentino (Online). 2019;4(2):205-9. doi: 10.20527/dentino.v4i2.7055.

Sakemi Y, Hayashi K, Tsuchiya A, Nakashima Y, Ishikawa K. Fabrication and histological evaluation of porous carbonate apatite block from gypsum block containing spherical phenol resin as a porogen. Mater. 2019;12(23):3997. doi: 10.3390/ma12233997.

Akita K, Fukuda N, Kamada K, Kudoh K, Kurio N, Tsuru K, Ishikawa K, Miyamoto Y. Fabrication of porous carbonate apatite granules using microfiber and its histological evaluations in rabbit calvarial bone defects. J Biomed Mater Res Part A. 2020;108(3):709-21. doi: 10.1002/jbm.a.36850.

Hayashi K, Kato N, Kato M, Ishikawa K. Impacts of channel direction on bone tissue engineering in 3D-printed carbonate apatite scaffolds. Mater Design. 2021;204:109686. doi: 10.1016/j.matdes.2021.109686.

Hayashi K, Kishida R, Tsuchiya A, Ishikawa K. Honeycomb blocks composed of carbonate apatite, β-tricalcium phosphate, and hydroxyapatite for bone regeneration: effects of composition on biological responses. Mater Today Bio. 2019;4:100031. doi: 10.1016/j.mtbio.2019.100031.

Hayashi K, Kishida R, Tsuchiya A, Ishikawa K. Carbonate apatite micro‐honeycombed blocks generate bone marrow‐like tissues as well as bone. Adv Biosys. 2019;3(12):1900140. doi: 10.1002/adbi.201900140.

Kudoh K, Fukuda N, Akita K, Kudoh T, Takamaru N, Kurio N, et al. Reconstruction of rabbit mandibular bone defects using carbonate apatite honeycomb blocks with an interconnected porous structure. J Mater Sci Mater Med. 2022;34(1):2. doi: 10.1007/s10856-022-06710-2.

Eriwati Y, Yulfa R, Wijatmo I, Irawan B. Different molarities and dissolution-precipitation duration affect the formation of carbonate-apatite blocks for bone graft material. Pesqui Bras Odontopediatria Clín Integr. 2020;20:e5644. doi: 10.1590/pboci.2020.110.

Ishikawa K, Arifta T, Hayashi K, Tsuru K. Fabrication and evaluation of interconnected porous carbonate apatite from alpha tricalcium phosphate spheres. J Biomed Mater Res Part B Appl Biomater. 2019;107(2):269-77. doi: 10.1002/jbm.b.34117.

Darus F, Jaafar M, Ahmad N. Preparation of carbonate apatite scaffolds using different carbonate solution and soaking time. Process Appl Ceram. 2019;13(2):139-48. doi: 10.2298/PAC1902139D.

Darus F, Jaafar M. Enhancement of carbonate apatite scaffold properties with surface treatment and alginate and gelatine coating. J Porous Mater. 2020;27(3):831-42. doi: 10.1007/s10934-019-00848-1.

Mamat N, Jaafar M, Hamid Z. Fabrication of Carbonate Apatite Based on Hydrothermal Reaction Using Freeze-Casted β-TCP Precursor. Solid State Phenom. 2017;264:50-3. doi: 10.4028/www.scientific.net/SSP.264.50.

Mamat N, Jaafar M, Hamid Z, Yahaya B. Silane treatment of coated carbonate apatite scaffold affects bioactivity and cell viability. J Phys Conf Ser. 2019;1372(1):012054. doi: 10.1088/1742-6596/1372/1/012054.

Tsuru K, Yoshimoto A, Kanazawa M, Sugiura Y, Nakashima Y, Ishikawa K. Fabrication of carbonate apatite block through a dissolution–precipitation reaction using calcium hydrogen phosphate dihydrate block as a precursor. Mater. 2017;10(4):374. doi: 10.3390/ma10040374.

Kanazawa M, Tsuru K, Fukuda N, Sakemi Y, Nakashima Y, Ishikawa K. Evaluation of carbonate apatite blocks fabricated from dicalcium phosphate dihydrate blocks for reconstruction of rabbit femoral and tibial defects. J Mater Sci Mater Med. 2017;28:1-11. doi: 10.1007/s10856-017-5896-5.

Sugiura Y, Ishikawa K. Fabrication of carbonate apatite blocks from octacalcium phosphate blocks through different phase conversion mode depending on carbonate concentration. J Solid State Chem 2018;267:85-91. doi: 10.1016/j.jssc.2018.08.008.




DOI: http://dx.doi.org/10.14748/ssmd.v11i1.9879

Refbacks

About The Authors

Ivaylo Parushev
Medical University of Varna
Bulgaria

Department of Clinical Medical Sciences, Faculty of Dental Medicine

Tsvetalina Gerova-Vatsova
Medical University of Varna
Bulgaria

Department of Periodontology and Dental Implantology, Faculty of Dental Medicine

Font Size


|